# NOT RUN {
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
### generate new covariates
new_covariates <- data.frame(Z = rbinom(20, size = 1, prob = 0.5))
### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7, 0.8, 0.9
caThreshold(userFormula, new_covariates,
diseaseData = diseaseData,
controlData = NULL,
control_sensitivity = c(0.7,0.8,0.9),
control_specificity = NULL)
### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7
caThreshold(userFormula,new_covariates,
diseaseData = diseaseData,
controlData = NULL,
control_sensitivity = 0.7,
control_specificity = NULL)
### calculate covariate-adjusted thresholds at controlled
### specificity level 0.7, 0.8, 0.9
caThreshold(userFormula,new_covariates,
diseaseData = NULL,
controlData = controlData,
control_sensitivity = NULL,
control_specificity = c(0.7,0.8,0.9))
### calculate covariate-adjusted thresholds at controlled
### specificity level 0.7
caThreshold(userFormula,new_covariates,
diseaseData = NULL,
controlData = controlData,
control_sensitivity = NULL,
control_specificity = 0.7)
# }
Run the code above in your browser using DataLab