# NOT RUN {
results <- cabootcrs(DreamData, showresults=FALSE)
row2covmataxes12 <- covmat(results,2,"row")
col3covmataxes23 <- covmat(results,3,"column",2,3)
# }
# NOT RUN {
# There are now 3 variables with 5,4,3 categories, hence 12 columns
resultsmca <- cabootcrs(DreamData223by3, catype="mca", showresults=FALSE)
row2covmataxes12mca <- covmat(resultsmca,2,"column")
col3covmataxes23mca <- covmat(resultsmca,8,"column",2,3)
newvarcat2covmataxes12mca <- covmat(resultsmca,11,"column")
# Use ellipse() to put confidence regions around row points on a plot produced by ca().
# Note that reflectaxes() will be needed if cabootcrs() and ca() axes
# are reflected with respect to each other
library(ca)
library(ellipse)
TheData <- DreamData
Results <- cabootcrs(TheData, showresults=FALSE)
caResults <- ca(TheData)
plot(caResults)
for (i in 1:dim(TheData)[1]) {
lines( ellipse(x=covmat(Results,i,"row",1,2,FALSE),
centre=Results@Rowprinccoord[i,cbind(1,2)], npoints=1000),
cex=1, pch=".", col="blue")
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab