Learn R Programming

cacIRT (version 1.4)

Useful IRT Functions: A collection of useful IRT functions.

Description

Modified from the package irtoys.

Usage

iif(ip, x, D = 1.7) irf(ip, x, D = 1.7) MLE(resp, ip, D = 1.7, min= -4, max = 4) normal.qu(n = 15, lower = -4, upper = 4, mu = 0, sigma = 1) SEM(ip, x, D = 1.7) sim(ip, x, D = 1.7) tif(ip, x, D = 1.7)

Arguments

ip
A Jx3 matrix of item parameters. Columns are discrimination, difficulty, and guessing
x
Vector of theta points
resp
Response data matrix, subjects by items
min, max
MLE is undefined for perfect scores. These parameters define the range in which to search for the MLE, if the score is perfect, the min or max will be returned.
n
Number of quadrature points wanted
lower, upper
Range of points wanted
mu, sigma
The normal distribution from which points and weights are taken
D
The scaling constant for the IRT parameters, defaults to 1.7, alternatively often set to 1.

Details

iif gives item information, irf gives item response function, MLE returns maximum likelihood estimates of theta (perfect scores get +-4), normal.qu returns a list length 2 of normal quadrature points and weights, SEM gives the standard error of measurement at the given ability points, sim returns simulated response matrix, tif gives the test information function.

References

Partchev, I. (2014) irtoys: Simple interface to the estimation and plotting of IRT models. R package version 0.1.7.

Examples

Run this code
params<-matrix(c(1,1,1,1,-2,1,0,1,0,0,0,0),4,3)
rdm<-sim(params, rnorm(100))

theta.hat <- MLE(rdm, params)
theta.se  <- SEM(rdm, params)

## transform a cut score of theta = 0 to the expected true score scale

	t.cut <- 0
	x.cut <- sum(irf(params, t.cut)$f)

Run the code above in your browser using DataLab