Learn R Programming

calibrationbands

An R package to assess calibration of binary outcome predictions. Authored by Timo Dimitriadis (Heidelberg University), Alexander Henzi (University of Bern), and Marius Puke (University of Hohenheim).

Installation

Development version

The most current version is available from GitHub.

# install.packages("devtools")
devtools::install_github("marius-cp/calibrationband")

Example

library(calibrationband)
library(dplyr)
set.seed(123)
s=.8
n=10000
x <- runif(n)
p <- function(x,s){p = 1/(1+((1/x*(1-x))^(s+1)));return(p)}
dat <- tibble::tibble(pr=x, s=s, cep = p(pr,s), y=rbinom(n,1,cep))%>% dplyr::arrange(pr)

cb <- calibration_bands(x=dat$pr, y=dat$y,alpha=0.05, method = "round", digits = 3)
print(cb) # prints autoplot and summary, see also autoplot(.) and summary(.)

#> Areas of misscalibration (ordered by length). In addition there are 1 more. 
#> # A tibble: 4 × 2
#>    min_x max_x
#>    <dbl> <dbl>
#> 1 0.0396 0.299
#> 2 0.693  0.951
#> 3 0.957  0.957
#> # … with 1 more row

Use ggplot2:autolayer to customize the plot.

autoplot(cb,approx.equi=500, cut.bands = F,p_isoreg = NA,p_ribbon = NA,p_diag = NA)+
  ggplot2::autolayer(
    cb,
    cut.bands = F,
    p_diag = list(low = "green", high = "red", guide = "none", limits=c(0,1)),
    p_isoreg = list(linetype = "dashed"),
    p_ribbon = list(alpha = .1, fill = "red", colour = "purple")
                     )

```

Copy Link

Version

Install

install.packages('calibrationband')

Monthly Downloads

217

Version

0.2.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Marius Puke

Last Published

August 9th, 2022

Functions in calibrationband (0.2.1)

summary.calibrationband

summarize calibration band object
print.calibrationband

Print monotone confidence bands
reexports

Objects exported from other packages
plot.calibrationband

Plotting monotone confidence bands
calibration_bands

Confidence bands for monotone probabilities