assess
evaluates the quality of mean estimations using the
methodology created by INE Chile, which considers sample size, degrees of freedom, and
coefficient of variation.
assess(
table,
publish = FALSE,
scheme = c("chile", "eclac_2020", "eclac_2023", "chile_economics"),
domain_info = FALSE,
low_df_justified = FALSE,
table_n_obj = NULL,
ratio_between_0_1 = TRUE,
...
)
dataframe
with all the columns included in the input table, plus a new column
containing a label indicating the evaluation of each estimation: reliable, bit reliable, or unreliable.
dataframe
created by crear_insumos_media
.
boolean
indicating if the evaluation of the complete table
must be added. If TRUE
, the function adds a new column to the dataframe
.
character
variable indicating the evaluation protocol to use. Options are "chile", "eclac_2020", "eclac_2023", "chile_economics".
Logical. If TRUE
, indicates that the study domain information is available and will be used for assessment.
This affects how the evaluation is conducted, leveraging specific domain-level data to refine the assessment results.
When FALSE
, domain-specific adjustments are omitted, and a generalized assessment is performed.
Logical. If TRUE
the low degrees of freedom are justified and will be used for assessment. By default FALSE
.
Default NULL
. Dataframe with the target sample size column n_obj
and columns with the domains to evaluate. Its important check the domain columns type with table.
boolean
. If TRUE
, indicates that the estimator is a ratio between 0 and 1.
additional parameters for the evaluation. The complete list of parameters is: 1. General Parameters
df
degrees of freedom. Default: 9.
n
sample size. Default for chile scheme: 60. Default for CEPAL schemes: 100. Default for chile economic standard scheme: 30.
2. chile Parameters
cv_lower_ine
lower limit for CV. Default: 0.15.
cv_upper_ine
upper limit for CV. Default: 0.3.
3. CEPAL 2020 Parameters
cv_cepal
limit for CV. Default: 0.2.
ess
effective sample size. Default: 140.
unweighted
unweighted count. Default: 50.
log_cv
logarithmic coefficient of variation. Default: 0.175.
4. CEPAL 2023 Parameters
cv_lower_cepal
lower limit for CV. Default: 0.2.
cv_upper_cepal
upper limit for CV. Default: 0.3.
ess
effective sample size. Default: 60.
cvlog_max
maximum logarithmic coefficient of variation. Default: 0.175.
CCNP_b
unweighted count before adjustment. Default: 50.
CCNP_a
unweighted count after adjustment. Default: 30.
5. Chile Economic Survey Standard Parameters
cv_lower_econ
lower limit for CV. Default: 0.2.
cv_upper_econ
upper limit for CV. Default: 0.3.
dc <- survey::svydesign(ids = ~varunit, strata = ~varstrat, data = epf_personas, weights = ~fe)
assess(create_mean("gastot_hd", domains = "zona+sexo", design = dc))
Run the code above in your browser using DataLab