pgls(formula, data, lambda = 1.0, kappa = 1.0, delta= 1.0, param.CI = 0.95, control = list(fnscale=-1), bounds = list(lambda=c(1e-6,1), kappa=c(1e-6,3), delta=c(1e-6,3)))
pgls.likelihood(optimPar, fixedPar, y, x, V, optim.output=TRUE, names.optim=NULL)
pgls.blenTransform(V, fixedPar)pgls containing the following:"na.action" "param.CI"
data is reduced to complete cases. In the future, a scope argument may be provided to control this but at present the data frame should be reduced to only those variables used in the maximal model in order to avoid prevent redundant variables causing rows to be dropped unnecessarily.The 'pgls.likelihood' and 'pgls.blenTransform' methods are not primarily intended to be called by users. The 'pgls.likelihood' function provides a general method to calculate the likelihood of a model, given the covariance matrix, response, design matrix and branch length parameters.
pgls.profile, anova.pgls, summary.pglsdata(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species, vcv=TRUE, vcv.dim=3)
mod1 <- pgls(log(Egg.Mass) ~ log(M.Mass) * log(F.Mass), shorebird, lambda='ML')
mod2 <- pgls(log(Egg.Mass) ~ log(M.Mass), data=shorebird, lambda='ML', delta='ML')Run the code above in your browser using DataLab