Learn R Programming

capybara (version 1.8.0)

augment.feglm: Broom Integration

Description

The provided broom methods do the following:

  1. augment: Takes the input data and adds additional columns with the fitted values and residuals.

  2. glance: Extracts the deviance, null deviance, and the number of observations.`

  3. tidy: Extracts the estimated coefficients and their standard errors.

Usage

# S3 method for feglm
augment(x, newdata = NULL, ...)

# S3 method for felm augment(x, newdata = NULL, ...)

# S3 method for feglm glance(x, ...)

# S3 method for felm glance(x, ...)

# S3 method for feglm tidy(x, conf_int = FALSE, conf_level = 0.95, ...)

# S3 method for felm tidy(x, conf_int = FALSE, conf_level = 0.95, ...)

Value

A tibble with the respective information for the augment, glance, and tidy methods.

Arguments

x

A fitted model object.

newdata

Optional argument to use data different from the data used to fit the model.

...

Additional arguments passed to the method.

conf_int

Logical indicating whether to include the confidence interval.

conf_level

The confidence level for the confidence interval.

Examples

Run this code
mod <- fepoisson(mpg ~ wt | cyl, mtcars)
broom::augment(mod)
broom::glance(mod)
broom::tidy(mod)

Run the code above in your browser using DataLab