rstudent(model, ...)
rstudent.lm(model, infl=influence(model), names=infl$names, ...)
rstudent.glm(model, infl=influence(model), names=infl$names, ...)
hatvalues(model, ...)
hatvalues.lm(model, infl=influence(model), names=infl$names, ...)
cookd(model, ...)
cookd.lm(model, infl=influence(model), sumry=summary(model), names=infl$names, ...)
cookd.glm(model, infl=influence(model), sumry=summary(model), names=infl$names, ...)
dfbeta(model, ...)
dfbeta.lm(model, infl=influence(model), names=infl$names, ...)
dfbetas(model, ...)
dfbetas.lm(model, infl=influence(model), sumry=summary(model), names=infl$names, ...)
influence(model, ...)
influence.lm(model, do.coef=TRUE, ...)
influence.glm(model, do.coef=TRUE, ...)lm or glm model object.model by influence.model by summary.rstudent, hatvalues, and cookd return vectors with one entry for
each observation; dfbeta and dfbetas return matrices with rows for
observations and columns for coefficients.
influence returns a list with entries:influence.lm or influence.glm, which are slightly
modified versions of lm.influence from the base package. Values for generalized linear
models are approximations, as described in Williams (1987) (except that Cook's distances are
scaled as F rather than as chi-square values).
Normally, the generic versions of these functions are the ones to be used directly. For
hatvalues, dfbeta, and dfbetas, the method for linear models
also works for generalized linear models.
The following diagnostics are provided:
[object Object],[object Object],[object Object],[object Object],[object Object]influence.measuresdata(Duncan)
attach(Duncan)
mod <- lm(prestige ~ income + education)
qq.plot(rstudent(mod), distribution="t", df=41)
plot(hatvalues(mod))
plot(cookd(mod))
plot(dfbeta(mod)[,2])
plot(dfbetas(mod)[,2])Run the code above in your browser using DataLab