box.cox.powers(X, start=NULL, hypotheses=NULL, ...)
## S3 method for class 'box.cox.powers':
print(x, ...)
## S3 method for class 'box.cox.powers':
summary(object, digits=4, ...)
NULL
(the default), univariate Box-Cox transformations will
be computed and used as the start values.NULL
, a list of hypotheses to be tested;
each hypothesis should be a vector of values giving the power for each
column of X
. Note that the hypotheses that all powers are 1 and
that all powers are 0 (log) aroptim
function.box.cox.powers
object.box.cox.powers
, which may be printed
or summarized.boxcox
function in the
MASS
package.
The function estimates the Box-Cox powers,
$x_{j}^{\prime }=(x_{j}^{\lambda _{j}}-1)/\lambda _{j}$
for $\lambda _{j} \neq 0$ and $x_{j}^{\prime }=\log x_{j}$
for $\lambda _{j}=0$. Subsequently using ordinary power
transformations (i.e., $x^p$ for $p \neq 0$)
achieves the same result.boxcox
, box.cox
, box.cox.var
,
box.cox.axis
data(Prestige)
attach(Prestige)
summary(box.cox.powers(cbind(income, education)))
## Box-Cox Transformations to Multinormality
##
## Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
## income 0.2617 0.1014 2.580 -7.280
## education 0.4242 0.4033 1.052 -1.428
##
## L.R. test, all powers = 0: 7.694 df = 2 p = 0.0213
## L.R. test, all powers = 1: 48.8727 df = 2 p = 0
plot(income, education)
plot(box.cox(income, .26), box.cox(education, .42))
summary(box.cox.powers(income))
## Box-Cox Transformation to Normality
##
## Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
## 0.1793 0.1108 1.618 -7.406
##
## L.R. test, power = 0: 2.7103 df = 1 p = 0.0997
## L.R. test, power = 1: 47.261 df = 1 p = 0
qq.plot(income)
qq.plot(income^.18)
Run the code above in your browser using DataLab