ellipse(center, shape, radius, log="", center.pch=19, center.cex=1.5,
segments=51, draw=TRUE, add=draw, xlab="", ylab="",
col=palette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, ...)
dataEllipse(x, y, log="", levels=c(0.5, 0.95), center.pch=19, center.cex=1.5,
draw=TRUE, plot.points=draw, add=!plot.points, segments=51, robust=FALSE,
xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)),
col=palette()[1:2], lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, ...)
confidenceEllipse(model, ...)
## S3 method for class 'lm':
confidenceEllipse(model, which.coef, levels=0.95, Scheffe=FALSE,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=palette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw, ...)
## S3 method for class 'glm':
confidenceEllipse(model, which.coef, levels=0.95, Scheffe=FALSE,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=palette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw, ...)"x" if the x-axis is logged, "y" if the y-axis is
logged, and "xy"TRUE produce graphical output; if FALSE, only invisibly return coordinates of ellipse(s).TRUE add ellipse(s) to current plot.y is missing) a 2-column numeric matrix.x.FALSE data ellipses are drawn,
but points are not plotted.TRUE use the cov.trob function in the lm or glm.TRUE scale the ellipse so that its projections onto the
axes give Scheffe confidence intervals for the coefficients.2 (see par).col (default, FALSE)?0.3).plot and
line.ellipse returns invisibly the (x, y) coordinates of the calculated ellipse.
dataEllipse and confidenceEllipse return invisibly the coordinates of one or more ellipses, in the latter instance a list named by
levels.dataEllipse superimposes the normal-probability contours over a scatterplot
of the data.cov.trob.dataEllipse(Prestige$income, Prestige$education, levels=0.1*1:9, lty=2,
fill=TRUE, fill.alpha=0.1)
confidenceEllipse(lm(prestige~income+education, data=Prestige), Scheffe=TRUE)Run the code above in your browser using DataLab