spreadLevelPlot(x, ...)
slp(...)
"spreadLevelPlot"(x, data=NULL, subset, na.action, main=paste("Spread-Level Plot for", varnames[response], "by", varnames[-response]), ...)
"spreadLevelPlot"(x, by, robust.line=TRUE,
start=0, xlab="Median", ylab="Hinge-Spread", point.labels=TRUE, las=par("las"),
main=paste("Spread-Level Plot for", deparse(substitute(x)),
"by", deparse(substitute(by))), col=palette()[1], col.lines=palette()[2], pch=1, lwd=2, grid=TRUE, ...)
"spreadLevelPlot"(x, robust.line=TRUE, smoother=loessLine, smoother.args=list(),
xlab="Fitted Values",
ylab="Absolute Studentized Residuals", las=par("las"),
main=paste("Spread-Level Plot for\n", deparse(substitute(x))),
pch=1, col=palette()[1], col.lines=palette()[2], col.smoother=palette()[3],
lwd=2, grid=TRUE, ...)
"print"(x, ...)y ~ x, where y is a numeric vector
and x is a factor, or an lm object to be plotted; alternatively a numeric vector.spreadLevelPlot is called.NAs.
The default is set by the na.action setting of options.TRUE a robust line is fit using the rlm function in
the MASS package; if FALSE a line is fit using lm.loessLine,
which does loess smoothing. The function gamLine fits a generalized additive model and
allows including a link and error function.
See ScatterplotSmoothers.
Setting this argument to something other than a function, e.g., FALSE suppresses the smoother.ScatterplotSmoothers).start to each data value.TRUE label the points in the plot with group names.0, ticks labels are drawn parallel to the
axis; set to 1 for horizontal labels (see par).1
(a circle, see par).2 (see par).spreadLevelPlot containing:
lm object.)slp is an abbreviation for spreadLevelPlot.
hccm, ncvTest spreadLevelPlot(interlocks + 1 ~ nation, data=Ornstein)
slp(lm(interlocks + 1 ~ assets + sector + nation, data=Ornstein))
Run the code above in your browser using DataLab