hccm(model, ...)
"hccm"(model, type=c("hc3", "hc0", "hc1", "hc2", "hc4"),
singular.ok=TRUE, ...)
"hccm"(model, ...)
lm
."hc0"
, "hc1"
, "hc2"
, "hc3"
, or "hc4"
; the
first of these gives the classic White correction. The "hc1"
, "hc2"
, and "hc3"
corrections are described in Long and Ervin (2000); "hc4"
is described in Cribari-Neto (2004).FALSE
(the default is TRUE
), a model with aliased coefficients
produces an error; otherwise, the aliased coefficients are ignored in the coefficient covariance
matrix that's returned.hccm.lm
."hc0"
) (for an unweighted model) is
hccm.default
simply catches non-lm
objects.
Cribari-Neto, F. (2004) Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics and Data Analysis 45, 215--233. Long, J. S. and Ervin, L. H. (2000) Using heteroscedasity consistent standard errors in the linear regression model. The American Statistician 54, 217--224. White, H. (1980) A heteroskedastic consistent covariance matrix estimator and a direct test of heteroskedasticity. Econometrica 48, 817--838.
options(digits=4)
mod<-lm(interlocks~assets+nation, data=Ornstein)
vcov(mod)
## (Intercept) assets nationOTH nationUK nationUS
## (Intercept) 1.079e+00 -1.588e-05 -1.037e+00 -1.057e+00 -1.032e+00
## assets -1.588e-05 1.642e-09 1.155e-05 1.362e-05 1.109e-05
## nationOTH -1.037e+00 1.155e-05 7.019e+00 1.021e+00 1.003e+00
## nationUK -1.057e+00 1.362e-05 1.021e+00 7.405e+00 1.017e+00
## nationUS -1.032e+00 1.109e-05 1.003e+00 1.017e+00 2.128e+00
hccm(mod)
## (Intercept) assets nationOTH nationUK nationUS
## (Intercept) 1.664e+00 -3.957e-05 -1.569e+00 -1.611e+00 -1.572e+00
## assets -3.957e-05 6.752e-09 2.275e-05 3.051e-05 2.231e-05
## nationOTH -1.569e+00 2.275e-05 8.209e+00 1.539e+00 1.520e+00
## nationUK -1.611e+00 3.051e-05 1.539e+00 4.476e+00 1.543e+00
## nationUS -1.572e+00 2.231e-05 1.520e+00 1.543e+00 1.946e+00
Run the code above in your browser using DataLab