# avPlots

##### Added-Variable Plots

These functions construct added-variable (also called partial-regression) plots for linear and generalized linear models.

- Keywords
- hplot, regression

##### Usage

`avPlots(model, terms=~., intercept=FALSE, layout=NULL, ask, main, ...)`avp(...)

avPlot(model, ...)

# S3 method for lm
avPlot(model, variable,
id.method = list(abs(residuals(model, type="pearson")), "x"),
labels,
id.n = if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr",
col = palette()[1], col.lines = palette()[2],
xlab, ylab, pch = 1, lwd = 2,
main=paste("Added-Variable Plot:", variable),
grid=TRUE,
ellipse=FALSE, ellipse.args=NULL,
marginal.scale=FALSE, ...)

# S3 method for glm
avPlot(model, variable,
id.method = list(abs(residuals(model, type="pearson")), "x"),
labels,
id.n = if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], id.location="lr",
col = palette()[1], col.lines = palette()[2],
xlab, ylab, pch = 1, lwd = 2, type=c("Wang", "Weisberg"),
main=paste("Added-Variable Plot:", variable), grid=TRUE,
ellipse=FALSE, ellipse.args=NULL, ...)

##### Arguments

- model
model object produced by

`lm`

or`glm`

.- terms
A one-sided formula that specifies a subset of the predictors. One added-variable plot is drawn for each term. For example, the specification

`terms = ~.-X3`

would plot against all terms except for`X3`

. If this argument is a quoted name of one of the terms, the added-variable plot is drawn for that term only.- intercept
Include the intercept in the plots; default is

`FALSE`

.- variable
A quoted string giving the name of a regressor in the model matrix for the horizontal axis

- layout
If set to a value like

`c(1, 1)`

or`c(4, 3)`

, the layout of the graph will have this many rows and columns. If not set, the program will select an appropriate layout. If the number of graphs exceed nine, you must select the layout yourself, or you will get a maximum of nine per page. If`layout=NA`

, the function does not set the layout and the user can use the`par`

function to control the layout, for example to have plots from two models in the same graphics window.- main
The title of the plot; if missing, one will be supplied.

- ask
If

`TRUE`

, ask the user before drawing the next plot; if`FALSE`

don't ask.- …
`avPlots`

passes these arguments to`avPlot`

.`avPlot`

passes them to`plot`

.- id.method,labels,id.n,id.cex,id.col,id.location
Arguments for the labelling of points. The default is

`id.n=0`

for labeling no points. See`showLabels`

for details of these arguments.- col
color for points; the default is the

*second*entry in the current color palette (see`palette`

and`par`

).- col.lines
color for the fitted line.

- pch
plotting character for points; default is

`1`

(a circle, see`par`

).- lwd
line width; default is

`2`

(see`par`

).- xlab
x-axis label. If omitted a label will be constructed.

- ylab
y-axis label. If omitted a label will be constructed.

- type
if

`"Wang"`

use the method of Wang (1985); if`"Weisberg"`

use the method in the Arc software associated with Cook and Weisberg (1999).- grid
If

`TRUE`

, the default, a light-gray background grid is put on the graph.- ellipse
If

`TRUE`

, plot a concentration ellipse; default is`FALSE`

.- ellipse.args
Arguments to pass to the

`link{dataEllipse}`

function, in the form of a list with named elements; e.g.,`ellipse.args=list(robust=TRUE))`

will cause the ellipse to be plotted using a robust covariance-matrix.- marginal.scale
Consider an added-variable plot of Y versus X given Z. If this argument is

`FALSE`

then the limits on the horizontal axis are determined by the range of the residuals from the regression of X on Z and the limits on the vertical axis are determined by the range of the residuals from the regressnio of Y on Z. If the argument is`TRUE`

, then the limits on the horizontal axis are determined by the range of X minus it mean, and on the vertical axis by the range of Y minus its means; adjustment is made if necessary to include outliers. This scaling allows visualization of the correlations between Y and Z and between X and Z. For example, if the X and Z are highly correlated, then the points will be concentrated on the middle of the plot.

##### Details

The function intended for direct use is `avPlots`

(for which `avp`

is an abbreviation).

##### Value

These functions are used for their side effect id producing plots, but also invisibly return the coordinates of the plotted points.

##### References

Cook, R. D. and Weisberg, S. (1999)
*Applied Regression, Including Computing and Graphics.* Wiley.

Fox, J. (2008)
*Applied Regression Analysis and Generalized Linear Models*,
Second Edition. Sage.

Fox, J. and Weisberg, S. (2011)
*An R Companion to Applied Regression*, Second Edition, Sage.

Wang, P C. (1985)
Adding a variable in generalized linear models.
*Technometrics* **27**, 273--276.

Weisberg, S. (2014) *Applied Linear Regression*, Fourth Edition, Wiley.

##### See Also

`residualPlots`

, `crPlots`

, `ceresPlots`

, `link{dataEllipse}`

##### Examples

```
# NOT RUN {
avPlots(lm(prestige~income+education+type, data=Duncan))
avPlots(glm(partic != "not.work" ~ hincome + children,
data=Womenlf, family=binomial))
m1 <- lm(partic ~ tfr + menwage + womwage + debt + parttime, Bfox)
par(mfrow=c(1,3))
plot(partic ~ womwage, Bfox) # marginal plot, ignoring other predictors
abline(lm(partic ~ womwage, Bfox), col="red", lwd=2)
grid()
avPlots(m1, ~ womwage) # av Plot, adjusting for others
avPlots(m1, ~ womwage, marginal.scale=TRUE) # av Plot, adjusting and scaling as in marginal plot
# }
```

*Documentation reproduced from package car, version 2.1-6, License: GPL (>= 2)*