densityPlot
contructs and graphs nonparametric density estimates, possibly conditioned on a factor, using the standard R density
function or by default adaptiveKernel
, which computes an adaptive kernel density estimate.
depan
provides the Epanechnikov kernel and dbiwt
provides the biweight kernel.
densityPlot(x, ...)# S3 method for default
densityPlot(x, g, method=c("adaptive", "kernel"),
bw=if (method == "adaptive") bw.nrd0 else "SJ", adjust=1,
kernel, xlim, ylim,
normalize=FALSE, xlab=deparse(substitute(x)), ylab="Density", main="",
col=carPalette(), lty=seq_along(col), lwd=2, grid=TRUE,
legend=TRUE, show.bw=FALSE, rug=TRUE, ...)
# S3 method for formula
densityPlot(formula, data=NULL, subset,
na.action=NULL, xlab, ylab, main="", legend=TRUE, ...)
adaptiveKernel(x, kernel=dnorm, bw=bw.nrd0, adjust=1.0, n=500,
from, to, cut=3, na.rm=TRUE)
depan(x)
dbiwt(x)
a numeric variable, the density of which is estimated; for
depan
and dbiwt
, the argument of the kernel function.
an optional factor to divide the data.
an R model formula, of the form ~ variable
to estimate the unconditional
density of variable
, or variable ~ factor
to estimate the density of variable
within each level of factor
.
an optional data frame containing the data.
an optional vector defining a subset of the data.
a function to handle missing values; defaults to the value of the R na.action
option,
initially set to na.omit
.
either "adaptive"
(the default) for an adaptive-kernel estimate or "kernel"
for a fixed-bandwidth kernel estimate.
the geometric mean bandwidth for the adaptive-kernel or bandwidth of the kernel density estimate(s). Must be a numerical value
or a function to compute the bandwidth (default bw.nrd0
) for the adaptive
kernel estimate; for the kernel estimate, may either the quoted name of a rule to
compute the bandwidth, or a numeric value. If plotting by groups, bw
may be a vector of values, one for each group. See density
and bw.SJ
for details of the kernel estimator.
a multiplicative adjustment factor for the bandwidth; the default, 1
, indicates no adjustment;
if plotting by groups, adjust
may be a vector of adjustment factors, one for each group. The default bandwidth-selection rule tends to give a value that's too large if
the distribution is asymmetric or has multiple modes; try setting adjust
< 1, particularly for the adaptive-kernel estimator.
for densityPlot
this is the name of the kernel function for the kernel estimator (the default is "gaussian"
, see density
);
or a kernel function for the adaptive-kernel estimator (the default is dnorm
, producing the Gaussian kernel).
For adaptivekernel
this is a kernel function, defaulting to dnorm
, which is the Gaussian kernel (standard-normal density).
axis limits; if missing, determined from the range of x-values at which the densities are estimated and the estimated densities.
if TRUE
(the default is FALSE
), the estimated densities are rescaled to integrate approximately to 1; particularly useful if the
density is estimated over a restricted domain, as when from
or to
are specified.
label for the horizontal-axis; defaults to the name of the variable x
.
label for the vertical axis; defaults to "Density"
.
plot title; default is empty.
vector of colors for the density estimate(s); defaults to the color carPalette
.
vector of line types for the density estimate(s); defaults to the successive integers, starting at 1.
line width for the density estimate(s); defaults to 2.
if TRUE
(the default), grid lines are drawn on the plot.
a list of up to two named elements: location
, for the legend when densities are plotted for several groups, defaults to
"upperright"
(see legend
); and title
of the legend, which defaults to the name of the grouping factor. If TRUE
,
the default, the default values are used; if FALSE
, the legend is suppressed.
number of equally spaced points at which the adaptive-kernel estimator is evaluated; the default is 500
.
the range over which the density estimate is computed; the default, if missing, is min(x) - cut*bw, max(x) + cut*bw
.
remove missing values from x
in computing the adaptive-kernel estimate? The default is TRUE
.
if TRUE
, show the bandwidth(s) in the horizontal-axis label or (for multiple groups)
the legend; the default is FALSE
.
if TRUE
(the default), draw a rug plot (one-dimentional scatterplot) at the bottom of the density estimate.
arguments to be passed down.
densityPlot
invisibly returns the "density"
object computed (or list of "density"
objects) and draws a graph.
adaptiveKernel
returns an object of class "density"
(see density)
.
If you use a different kernel function than the default dnorm
that has a
standard deviation different from 1 along with an automatic rule
like the default function bw.nrd0
, you can attach an attribute to the kernel
function named "scale"
that gives its standard deviation. This is true for
the two supplied kernels, depan
and dbiwt
Fox, J. and Weisberg, S. (2019) An R Companion to Applied Regression, Third Edition, Sage.
W. N. Venables and B. D. Ripley (2002) Modern Applied Statistics with S. New York: Springer.
B.W. Silverman (1986) Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
# NOT RUN {
densityPlot(~ income, show.bw=TRUE, method="kernel", data=Prestige)
densityPlot(~ income, show.bw=TRUE, data=Prestige)
densityPlot(~ income, from=0, normalize=TRUE, show.bw=TRUE, data=Prestige)
densityPlot(income ~ type, data=Prestige)
densityPlot(~ income, show.bw=TRUE, method="kernel", data=Prestige)
densityPlot(~ income, show.bw=TRUE, data=Prestige)
densityPlot(~ income, from=0, normalize=TRUE, show.bw=TRUE, data=Prestige)
densityPlot(income ~ type, kernel=depan, data=Prestige)
densityPlot(income ~ type, kernel=depan, legend=list(location="top"), data=Prestige)
plot(adaptiveKernel(UN$infantMortality, from=0, adjust=0.75), col="magenta")
lines(density(na.omit(UN$infantMortality), from=0, adjust=0.75), col="blue")
rug(UN$infantMortality, col="cyan")
legend("topright", col=c("magenta", "blue"), lty=1,
legend=c("adaptive kernel", "kernel"), inset=0.02)
plot(adaptiveKernel(UN$infantMortality, from=0, adjust=0.75), col="magenta")
lines(density(na.omit(UN$infantMortality), from=0, adjust=0.75), col="blue")
rug(UN$infantMortality, col="cyan")
legend("topright", col=c("magenta", "blue"), lty=1,
legend=c("adaptive kernel", "kernel"), inset=0.02)
# }
Run the code above in your browser using DataLab