Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (7.0-1) of this package.
Take me there.
caret (version 4.33)
Classification and Regression Training
Description
Misc functions for training and plotting classification and regression models
Copy Link
Link to current version
Version
Version
7.0-1
6.0-94
6.0-93
6.0-92
6.0-91
6.0-90
6.0-89
6.0-88
6.0-86
6.0-85
6.0-84
6.0-83
6.0-82
6.0-81
6.0-80
6.0-79
6.0-78
6.0-77
6.0-76
6.0-73
6.0-72
6.0-71
6.0-70
6.0-68
6.0-64
6.0-62
6.0-58
6.0-57
6.0-52
6.0-47
6.0-41
6.0-37
6.0-35
6.0-34
6.0-30
6.0-29
6.0-24
6.0-22
6.0-21
5.17-7
5.16-24
5.16-04
5.15-61
5.15-052
5.15-048
5.15-045
5.15-044
5.15-023
5.14-023
5.13-037
5.13-20
5.12-04
5.11-06
5.10-13
5.09-012
5.09-006
5.08-011
5.07-024
5.07-005
5.07-001
5.05.004
5.04-007
5.03-003
5.02-011
5.01-001
4.99
4.98
4.92
4.91
4.90
4.89
4.88
4.87
4.85
4.83
4.78
4.77
4.76
4.75
4.73
4.72
4.70
4.69
4.68
4.67
4.65
4.64
4.63
4.62
4.61
4.60
4.59
4.58
4.57
4.54
4.53
4.51
4.49
4.48
4.47
4.45
4.44
4.43
4.42
4.41
4.39
4.37
4.36
4.34
4.33
4.31
4.30
4.27
4.26
4.25
4.24
4.23
4.20
4.19
4.18
4.17
4.16
4.15
4.12
4.11
4.10
4.08
4.06
4.05
3.51
3.45
3.37
3.32
3.25
3.21
3.16
3.13
3.12
3.08
2.29
2.27
Install
install.packages('caret')
Monthly Downloads
230,598
Version
4.33
License
GPL-2
Maintainer
Max Kuhn
Last Published
March 1st, 2010
Functions in caret (4.33)
Search all functions
caret-internal
Internal Functions
print.confusionMatrix
Print method for confusionMatrix
print.train
Print Method for the train Class
maxDissim
Maximum Dissimilarity Sampling
preProcess
Pre-Processing of Predictors
train
Fit Predictive Models over Different Tuning Parameters
roc
Compute the points for an ROC curve
oneSE
Selecting tuning Parameters
bagEarth
Bagged Earth
classDist
Compute and predict the distances to class centroids
normalize.AffyBatch.normalize2Reference
Quantile Normalization to a Reference Distribution
plotClassProbs
Plot Predicted Probabilities in Classification Models
pcaNNet.default
Neural Networks with a Principal Component Step
plsda
Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
caretFuncs
Backwards Feature Selection Helper Functions
mdrr
Multidrug Resistance Reversal (MDRR) Agent Data
filterVarImp
Calculation of filter-based variable importance
bagFDA
Bagged FDA
knnreg
k-Nearest Neighbour Regression
format.bagEarth
Format 'bagEarth' objects
featurePlot
Wrapper for Lattice Plotting of Predictor Variables
aucRoc
Compute the area under an ROC curve
Alternate Affy Gene Expression Summary Methods.
Generate Expression Values from Probes
nullModel
Fit a simple, non-informative model
createGrid
Tuning Parameter Grid
predict.knn3
Predictions from k-Nearest Neighbors
knn3
k-Nearest Neighbour Classification
lattice.rfe
Lattice functions for plotting resampling results of recursive feature selection
rfe
Backwards Feature Selection
nearZeroVar
Identification of near zero variance predictors
predict.train
Extract predictions and class probabilities from train objects
pottery
Pottery from Pre-Classical Sites in Italy
findLinearCombos
Determine linear combinations in a matrix
findCorrelation
Determine highly correlated variables
histogram.train
Lattice functions for plotting resampling results
predict.knnreg
Predictions from k-Nearest Neighbors Regression Model
applyProcessing
Data Processing on Predictor Variables (Deprecated)
BloodBrain
Blood Brain Barrier Data
sensitivity
Calculate sensitivity, specificity and predictive values
postResample
Calculates performance across resamples
resampleHist
Plot the resampling distribution of the model statistics
predict.bagEarth
Predicted values based on bagged Earth and FDA models
caretSBF
Selection By Filtering (SBF) Helper Functions
predictors
List predictors used in the model
cox2
COX-2 Activity Data
as.table.confusionMatrix
Save Confusion Table Results
sbfControl
Control Object for Selection By Filtering (SBF)
panel.needle
Needle Plot Lattice Panel
plot.train
Plot Method for the train Class
dotPlot
Create a dotplot of variable importance values
plot.varImp.train
Plotting variable importance measures
normalize2Reference
Quantile Normalize Columns of a Matrix Based on a Reference Distribution
rfeControl
Controlling the Feature Selection Algorithms
plotObsVsPred
Plot Observed versus Predicted Results in Regression and Classification Models
sbf
Selection By Filtering (SBF)
resampleSummary
Summary of resampled performance estimates
createDataPartition
Data Splitting functions
oil
Fatty acid composition of commercial oils
confusionMatrix
Create a confusion matrix
tecator
Fat, Water and Protein Content of Maat Samples
spatialSign
Compute the multivariate spatial sign
varImp
Calculation of variable importance for regression and classification models
trainControl
Control parameters for train
summary.bagEarth
Summarize a bagged earth or FDA fit