
Last chance! 50% off unlimited learning
Sale ends in
## S3 method for class 'resamples':
xyplot(x, data = NULL, models = x$models[1:2], metric = x$metric[1], ...)## S3 method for class 'resamples':
densityplot(x, data = NULL, models = x$models, metric = x$metric, ...)
## S3 method for class 'resamples':
bwplot(x, data = NULL, models = x$models, metric = x$metric, ...)
## S3 method for class 'resamples':
splom(x, data = NULL, models = x$models, metric = x$metric[1], panelRange = NULL, ...)
## S3 method for class 'resamples':
parallel(x, data = NULL, models = x$models, metric = x$metric[1], ...)
resamples
xyplot
requires exactly two models whereas the other methods can plot more than two.splom
requires exactly one metric and does not condition.histogram
, densityplot
, xyplot
NULL
, the panel ranges are derived from the values across all the modelsxyplot
only uses two models in the plot. The plot uses difference of the models on the y-axis and the average of the models on the x-axis.densityplot
and bwplot
display univariate visualizations of the resampling distributions while splom
shows the pair-wise relationships.
resamples
, bwplot
, densityplot
, xyplot
, splom
#load(url("http://caret.r-forge.r-project.org/Classification_and_Regression_Training_files/exampleModels.RData"))
resamps <- resamples(list(CART = rpartFit,
CondInfTree = ctreeFit,
MARS = earthFit))
bwplot(resamps,
metric = "RMSE")
densityplot(resamps,
auto.key = list(columns = 3),
pch = "|")
xyplot(resamps,
models = c("CART", "MARS"),
metric = "RMSE")
splom(resamps, metric = "RMSE")
parallel(resamps, metric = "RMSE")
Run the code above in your browser using DataLab