Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (7.0-1) of this package.
Take me there.
caret (version 4.92)
Classification and Regression Training
Description
Misc functions for training and plotting classification and regression models
Copy Link
Link to current version
Version
Version
7.0-1
6.0-94
6.0-93
6.0-92
6.0-91
6.0-90
6.0-89
6.0-88
6.0-86
6.0-85
6.0-84
6.0-83
6.0-82
6.0-81
6.0-80
6.0-79
6.0-78
6.0-77
6.0-76
6.0-73
6.0-72
6.0-71
6.0-70
6.0-68
6.0-64
6.0-62
6.0-58
6.0-57
6.0-52
6.0-47
6.0-41
6.0-37
6.0-35
6.0-34
6.0-30
6.0-29
6.0-24
6.0-22
6.0-21
5.17-7
5.16-24
5.16-04
5.15-61
5.15-052
5.15-048
5.15-045
5.15-044
5.15-023
5.14-023
5.13-037
5.13-20
5.12-04
5.11-06
5.10-13
5.09-012
5.09-006
5.08-011
5.07-024
5.07-005
5.07-001
5.05.004
5.04-007
5.03-003
5.02-011
5.01-001
4.99
4.98
4.92
4.91
4.90
4.89
4.88
4.87
4.85
4.83
4.78
4.77
4.76
4.75
4.73
4.72
4.70
4.69
4.68
4.67
4.65
4.64
4.63
4.62
4.61
4.60
4.59
4.58
4.57
4.54
4.53
4.51
4.49
4.48
4.47
4.45
4.44
4.43
4.42
4.41
4.39
4.37
4.36
4.34
4.33
4.31
4.30
4.27
4.26
4.25
4.24
4.23
4.20
4.19
4.18
4.17
4.16
4.15
4.12
4.11
4.10
4.08
4.06
4.05
3.51
3.45
3.37
3.32
3.25
3.21
3.16
3.13
3.12
3.08
2.29
2.27
Install
install.packages('caret')
Monthly Downloads
222,842
Version
4.92
License
GPL-2
Maintainer
Max Kuhn
Last Published
July 6th, 2011
Functions in caret (4.92)
Search all functions
BoxCoxTrans.default
Box-Cox Transformations
as.table.confusionMatrix
Save Confusion Table Results
oneSE
Selecting tuning Parameters
BloodBrain
Blood Brain Barrier Data
findCorrelation
Determine highly correlated variables
normalize.AffyBatch.normalize2Reference
Quantile Normalization to a Reference Distribution
segmentationData
Cell Body Segmentation
applyProcessing
Data Processing on Predictor Variables (Deprecated)
diff.resamples
Inferential Assessments About Model Performance
plot.train
Plot Method for the train Class
predict.train
Extract predictions and class probabilities from train objects
cars
Kelly Blue Book resale data for 2005 model year GM cars
oil
Fatty acid composition of commercial oils
confusionMatrix
Create a confusion matrix
plotClassProbs
Plot Predicted Probabilities in Classification Models
histogram.train
Lattice functions for plotting resampling results
dummyVars
Create A Full Set of Dummy Variables
plot.varImp.train
Plotting variable importance measures
pcaNNet.default
Neural Networks with a Principal Component Step
filterVarImp
Calculation of filter-based variable importance
print.confusionMatrix
Print method for confusionMatrix
panel.needle
Needle Plot Lattice Panel
lattice.rfe
Lattice functions for plotting resampling results of recursive feature selection
modelLookup
Descriptions Of Models Available in train()
aucRoc
Compute the area under an ROC curve
cox2
COX-2 Activity Data
format.bagEarth
Format 'bagEarth' objects
classDist
Compute and predict the distances to class centroids
xyplot.resamples
Lattice Functions for Visualizing Resampling Results
roc
Compute the points for an ROC curve
GermanCredit
German Credit Data
dotPlot
Create a dotplot of variable importance values
createGrid
Tuning Parameter Grid
nullModel
Fit a simple, non-informative model
nearZeroVar
Identification of near zero variance predictors
caretFuncs
Backwards Feature Selection Helper Functions
caret-internal
Internal Functions
rfe
Backwards Feature Selection
knn3
k-Nearest Neighbour Classification
bagEarth
Bagged Earth
predict.knnreg
Predictions from k-Nearest Neighbors Regression Model
prcomp.resamples
Principal Components Analysis of Resampling Results
bag.default
A General Framework For Bagging
resampleSummary
Summary of resampled performance estimates
knnreg
k-Nearest Neighbour Regression
tecator
Fat, Water and Protein Content of Meat Samples
plsda
Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
rfeControl
Controlling the Feature Selection Algorithms
postResample
Calculates performance across resamples
pottery
Pottery from Pre-Classical Sites in Italy
plotObsVsPred
Plot Observed versus Predicted Results in Regression and Classification Models
maxDissim
Maximum Dissimilarity Sampling
print.train
Print Method for the train Class
dotplot.diff.resamples
Lattice Functions for Visualizing Resampling Differences
preProcess
Pre-Processing of Predictors
sbfControl
Control Object for Selection By Filtering (SBF)
resamples
Collation and Visualization of Resampling Results
sbf
Selection By Filtering (SBF)
sensitivity
Calculate sensitivity, specificity and predictive values
varImp
Calculation of variable importance for regression and classification models
findLinearCombos
Determine linear combinations in a matrix
featurePlot
Wrapper for Lattice Plotting of Predictor Variables
caretSBF
Selection By Filtering (SBF) Helper Functions
trainControl
Control parameters for train
train
Fit Predictive Models over Different Tuning Parameters
createDataPartition
Data Splitting functions
Alternate Affy Gene Expression Summary Methods.
Generate Expression Values from Probes
dhfr
Dihydrofolate Reductase Inhibitors Data
normalize2Reference
Quantile Normalize Columns of a Matrix Based on a Reference Distribution
resampleHist
Plot the resampling distribution of the model statistics
predictors
List predictors used in the model
predict.knn3
Predictions from k-Nearest Neighbors
bagFDA
Bagged FDA
mdrr
Multidrug Resistance Reversal (MDRR) Agent Data
predict.bagEarth
Predicted values based on bagged Earth and FDA models
icr.formula
Independent Component Regression
summary.bagEarth
Summarize a bagged earth or FDA fit
spatialSign
Compute the multivariate spatial sign