histogram.train

0th

Percentile

Lattice functions for plotting resampling results

A set of lattice functions are provided to plot the resampled performance estimates (e.g. classification accuracy, RMSE) over tuning parameters (if any).

Keywords
hplot
Usage
## S3 method for class 'train':
histogram(x, data = NULL, metric = x$metric, ...)

## S3 method for class 'train': densityplot(x, data = NULL, metric = x$metric, ...)

## S3 method for class 'train': xyplot(x, data = NULL, metric = x$metric, ...)

## S3 method for class 'train': stripplot(x, data = NULL, metric = x$metric, ...)

Details

By default, only the resampling results for the optimal model are saved in the train object. The function trainControl can be used to save all the results (see the example below).

If leave-one-out or out-of-bag resampling was specified, plots cannot be produced (see the method argument of trainControl)

For xyplot and stripplot, the tuning parameter with the most unique values will be plotted on the x-axis. The remaining parameters (if any) will be used as conditioning variables. For densityplot and histogram, all tuning parameters are used for conditioning.

Using horizontal = FALSE in stripplot works.

Value

  • A lattice plot object

See Also

train, trainControl, histogram, densityplot, xyplot, stripplot

Aliases
Examples
library(mlbench)
data(BostonHousing)

library(rpart)
rpartFit <- train(medv ~ .,
                  data = BostonHousing,
                  "rpart", 
                  tuneLength = 9,
                  trControl = trainControl(
                    method = "boot", 
                    returnResamp = "all"))

densityplot(rpartFit,
            adjust = 1.25)

xyplot(rpartFit,
       metric = "Rsquared",
       type = c("p", "a"))

stripplot(rpartFit,
          horizontal = FALSE,
          jitter = TRUE)
Documentation reproduced from package caret, version 5.07-001, License: GPL-2

Community examples

Looks like there are no examples yet.