Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (7.0-1) of this package.
Take me there.
caret (version 5.08-011)
Classification and Regression Training
Description
Misc functions for training and plotting classification and regression models
Copy Link
Link to current version
Version
Version
7.0-1
6.0-94
6.0-93
6.0-92
6.0-91
6.0-90
6.0-89
6.0-88
6.0-86
6.0-85
6.0-84
6.0-83
6.0-82
6.0-81
6.0-80
6.0-79
6.0-78
6.0-77
6.0-76
6.0-73
6.0-72
6.0-71
6.0-70
6.0-68
6.0-64
6.0-62
6.0-58
6.0-57
6.0-52
6.0-47
6.0-41
6.0-37
6.0-35
6.0-34
6.0-30
6.0-29
6.0-24
6.0-22
6.0-21
5.17-7
5.16-24
5.16-04
5.15-61
5.15-052
5.15-048
5.15-045
5.15-044
5.15-023
5.14-023
5.13-037
5.13-20
5.12-04
5.11-06
5.10-13
5.09-012
5.09-006
5.08-011
5.07-024
5.07-005
5.07-001
5.05.004
5.04-007
5.03-003
5.02-011
5.01-001
4.99
4.98
4.92
4.91
4.90
4.89
4.88
4.87
4.85
4.83
4.78
4.77
4.76
4.75
4.73
4.72
4.70
4.69
4.68
4.67
4.65
4.64
4.63
4.62
4.61
4.60
4.59
4.58
4.57
4.54
4.53
4.51
4.49
4.48
4.47
4.45
4.44
4.43
4.42
4.41
4.39
4.37
4.36
4.34
4.33
4.31
4.30
4.27
4.26
4.25
4.24
4.23
4.20
4.19
4.18
4.17
4.16
4.15
4.12
4.11
4.10
4.08
4.06
4.05
3.51
3.45
3.37
3.32
3.25
3.21
3.16
3.13
3.12
3.08
2.29
2.27
Install
install.packages('caret')
Monthly Downloads
230,598
Version
5.08-011
License
GPL-2
Maintainer
Max Kuhn
Last Published
November 25th, 2011
Functions in caret (5.08-011)
Search all functions
nullModel
Fit a simple, non-informative model
rfe
Backwards Feature Selection
caret-internal
Internal Functions
aucRoc
Compute the area under an ROC curve
oil
Fatty acid composition of commercial oils
dotPlot
Create a dotplot of variable importance values
findLinearCombos
Determine linear combinations in a matrix
plot.varImp.train
Plotting variable importance measures
cox2
COX-2 Activity Data
plotObsVsPred
Plot Observed versus Predicted Results in Regression and Classification Models
xyplot.resamples
Lattice Functions for Visualizing Resampling Results
rfeControl
Controlling the Feature Selection Algorithms
BloodBrain
Blood Brain Barrier Data
prcomp.resamples
Principal Components Analysis of Resampling Results
modelLookup
Descriptions Of Models Available in train()
resampleHist
Plot the resampling distribution of the model statistics
plot.train
Plot Method for the train Class
normalize2Reference
Quantile Normalize Columns of a Matrix Based on a Reference Distribution
sbfControl
Control Object for Selection By Filtering (SBF)
as.table.confusionMatrix
Save Confusion Table Results
classDist
Compute and predict the distances to class centroids
bagFDA
Bagged FDA
bag.default
A General Framework For Bagging
histogram.train
Lattice functions for plotting resampling results
plsda
Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
pottery
Pottery from Pre-Classical Sites in Italy
dummyVars
Create A Full Set of Dummy Variables
preProcess
Pre-Processing of Predictors
panel.lift2
Lattice Panel Functions for Lift Plots
nearZeroVar
Identification of near zero variance predictors
confusionMatrix.train
Estimate a Resampled Confusion Matrix
createDataPartition
Data Splitting functions
dhfr
Dihydrofolate Reductase Inhibitors Data
oneSE
Selecting tuning Parameters
resamples
Collation and Visualization of Resampling Results
confusionMatrix
Create a confusion matrix
format.bagEarth
Format 'bagEarth' objects
plotClassProbs
Plot Predicted Probabilities in Classification Models
filterVarImp
Calculation of filter-based variable importance
Alternate Affy Gene Expression Summary Methods.
Generate Expression Values from Probes
featurePlot
Wrapper for Lattice Plotting of Predictor Variables
pcaNNet.default
Neural Networks with a Principal Component Step
panel.needle
Needle Plot Lattice Panel
mdrr
Multidrug Resistance Reversal (MDRR) Agent Data
print.confusionMatrix
Print method for confusionMatrix
sensitivity
Calculate sensitivity, specificity and predictive values
findCorrelation
Determine highly correlated variables
dotplot.diff.resamples
Lattice Functions for Visualizing Resampling Differences
BoxCoxTrans.default
Box-Cox Transformations
predict.knnreg
Predictions from k-Nearest Neighbors Regression Model
postResample
Calculates performance across resamples
segmentationData
Cell Body Segmentation
train
Fit Predictive Models over Different Tuning Parameters
trainControl
Control parameters for train
caretFuncs
Backwards Feature Selection Helper Functions
resampleSummary
Summary of resampled performance estimates
caretSBF
Selection By Filtering (SBF) Helper Functions
varImp
Calculation of variable importance for regression and classification models
cars
Kelly Blue Book resale data for 2005 model year GM cars
maxDissim
Maximum Dissimilarity Sampling
predict.knn3
Predictions from k-Nearest Neighbors
lattice.rfe
Lattice functions for plotting resampling results of recursive feature selection
avNNet.default
Neural Networks Using Model Averaging
knnreg
k-Nearest Neighbour Regression
summary.bagEarth
Summarize a bagged earth or FDA fit
spatialSign
Compute the multivariate spatial sign
icr.formula
Independent Component Regression
roc
Compute the points for an ROC curve
tecator
Fat, Water and Protein Content of Meat Samples
sbf
Selection By Filtering (SBF)
predict.bagEarth
Predicted values based on bagged Earth and FDA models
diff.resamples
Inferential Assessments About Model Performance
createGrid
Tuning Parameter Grid
lift
Lift Plot
predictors
List predictors used in the model
print.train
Print Method for the train Class
bagEarth
Bagged Earth
normalize.AffyBatch.normalize2Reference
Quantile Normalization to a Reference Distribution
knn3
k-Nearest Neighbour Classification
GermanCredit
German Credit Data
predict.train
Extract predictions and class probabilities from train objects