# trainControl

##### Control parameters for train

Control the computational nuances of the `train`

function

- Keywords
- utilities

##### Usage

```
trainControl(method = "boot",
number = ifelse(method %in% c("cv", "repeatedcv"), 10, 25),
repeats = ifelse(method %in% c("cv", "repeatedcv"), 1, number),
p = 0.75,
initialWindow = NULL,
horizon = 1,
fixedWindow = TRUE,
verboseIter = FALSE,
returnData = TRUE,
returnResamp = "final",
savePredictions = FALSE,
classProbs = FALSE,
summaryFunction = defaultSummary,
selectionFunction = "best",
preProcOptions = list(thresh = 0.95, ICAcomp = 3, k = 5),
index = NULL,
indexOut = NULL,
timingSamps = 0,
predictionBounds = rep(FALSE, 2),
seeds = NA,
allowParallel = TRUE)
```

##### Arguments

- method
- The resampling method:
`boot`

,`boot632`

,`cv`

,`repeatedcv`

,`LOOCV`

,`LGOCV`

(for repeated training/test splits),`none`

(only fits one model to the entire training set) o - number
- Either the number of folds or number of resampling iterations
- repeats
- For repeated k-fold cross-validation only: the number of complete sets of folds to compute
- verboseIter
- A logical for printing a training log.
- returnData
- A logical for saving the data
- returnResamp
- A character string indicating how much of the resampled summary metrics should be saved. Values can be ``final'', ``all'' or ``none''
- savePredictions
- a logical to save the hold-out predictions for each resample
- p
- For leave-group out cross-validation: the training percentage
- initialWindow, horizon, fixedWindow
- possible arguments to
`createTimeSlices`

- classProbs
- a logical; should class probabilities be computed for classification models (along with predicted values) in each resample?
- summaryFunction
- a function to compute performance metrics across resamples. The arguments to the function should be the same as those in
`defaultSummary`

. - selectionFunction
- the function used to select the optimal tuning parameter. This can be a name of the function or the function itself. See
`best`

for details and other options. - preProcOptions
- A list of options to pass to
`preProcess`

. The type of pre-processing (e.g. center, scaling etc) is passed in via the`preProc`

option in`train`

. - index
- a list with elements for each resampling iteration. Each list element is the sample rows used for training at that iteration.
- indexOut
- a list (the same length as
`index`

) that dictates which sample are held-out for each resample. If`NULL`

, then the unique set of samples not contained in`index`

is used. - timingSamps
- the number of training set samples that will be used to measure the time for predicting samples (zero indicates that the prediction time should not be estimated.
- predictionBounds
- a logical or numeric vector of length 2 (regression only). If logical, the predictions can be constrained to be within the limit of the training set outcomes. For example, a value of
`c(TRUE, FALSE)`

would only constrain the lower end of predic - seeds
- an optional set of integers that will be used to set the seed at each resampling iteration. This is useful when the models are run in parallel. A value of
`NA`

will stop the seed from being set within the worker processes while a value of - allowParallel
- if a parallel backend is loaded and available, should the function use it?

##### Details

When setting the seeds manually, the number of models being evaluated is required. This may not be obvious as `train`

does some optimizations for certain models. For example, when tuning over PLS model, the only model that is fit is the one with the largest number of components. So if the model is being tuned over `comp in 1:10`

, the only model fit is `ncomp = 10`

. However, if the vector of integers used in the `seeds`

arguments is longer than actually needed, no error is thrown.

Using `method = "none"`

and specifying model than one model in `train`

's `tuneGrid`

or `tuneLength`

arguments will result in an error.

##### Value

- An echo of the parameters specified

##### Examples

```
## Do 5 repeats of 10-Fold CV for the iris data. We will fit
## a KNN model that evaluates 12 values of k and set the seed
## at each iteration.
set.seed(123)
seeds <- vector(mode = "list", length = 51)
for(i in 1:50) seeds[[i]] <- sample.int(1000, 22)
## For the last model:
seeds[[51]] <- sample.int(1000, 1)
ctrl <- trainControl(method = "repeatedcv",
repeats = 5,
seeds = seeds)
set.seed(1)
mod <- train(Species ~ ., data = iris,
method = "knn",
tuneLength = 12,
trControl = ctrl)
```

*Documentation reproduced from package caret, version 6.0-24, License: GPL-2*

### Community examples

**RAVINDARMADISHETTY@GMAIL.COM**at Jul 23, 2018 caret v6.0-80

I am getting below error while submitting a text x = trainControl(method = "repeatedcv", number = numbers, repeats = repeats, classProbs = TRUE, summaryFunction = twoClassSummary) Error: Please suggesrt Error in trainControl(method = "repeatedcv", number = numbers, repeats = repeats, : could not find function "trainControl"