train. Custom models can also be created. See the URL below.AdaBoost Classification Trees (method = 'adaboost')
For classification using package fastAdaboost with tuning parameters:
nIter, numeric)
method, character)
AdaBoost.M1 (method = 'AdaBoost.M1')
For classification using packages adabag and plyr with tuning parameters:
mfinal, numeric)
maxdepth, numeric)
coeflearn, character)
Adaptive Mixture Discriminant Analysis (method = 'amdai')
For classification using package adaptDA with tuning parameters:
model, character)
Adaptive-Network-Based Fuzzy Inference System (method = 'ANFIS')
For regression using package frbs with tuning parameters:
num.labels, numeric)
max.iter, numeric)
Adjacent Categories Probability Model for Ordinal Data (method = 'vglmAdjCat')
For classification using package VGAM with tuning parameters:
parallel, logical)
link, character)
Bagged AdaBoost (method = 'AdaBag')
For classification using packages adabag and plyr with tuning parameters:
mfinal, numeric)
maxdepth, numeric)
Bagged CART (method = 'treebag')
For classification and regression using packages ipred, plyr and e1071 with no tuning parameters
Bagged FDA using gCV Pruning (method = 'bagFDAGCV')
For classification using package earth with tuning parameters:
degree, numeric)
Bagged Flexible Discriminant Analysis (method = 'bagFDA')
For classification using packages earth and mda with tuning parameters:
degree, numeric)
nprune, numeric)
Bagged Logic Regression (method = 'logicBag')
For classification and regression using package logicFS with tuning parameters:
nleaves, numeric)
ntrees, numeric)
Bagged MARS (method = 'bagEarth')
For classification and regression using package earth with tuning parameters:
nprune, numeric)
degree, numeric)
Bagged MARS using gCV Pruning (method = 'bagEarthGCV')
For classification and regression using package earth with tuning parameters:
degree, numeric)
Bagged Model (method = 'bag')
For classification and regression using package caret with tuning parameters:
vars, numeric)
Bayesian Additive Regression Trees (method = 'bartMachine')
For classification and regression using package bartMachine with tuning parameters:
num_trees, numeric)
k, numeric)
alpha, numeric)
beta, numeric)
nu, numeric)
Bayesian Generalized Linear Model (method = 'bayesglm')
For classification and regression using package arm with no tuning parameters
Bayesian Regularized Neural Networks (method = 'brnn')
For regression using package brnn with tuning parameters:
neurons, numeric)
Bayesian Ridge Regression (method = 'bridge')
For regression using package monomvn with no tuning parameters
Bayesian Ridge Regression (Model Averaged) (method = 'blassoAveraged')
For regression using package monomvn with no tuning parameters
Binary Discriminant Analysis (method = 'binda')
For classification using package binda with tuning parameters:
lambda.freqs, numeric)
Boosted Classification Trees (method = 'ada')
For classification using packages ada and plyr with tuning parameters:
iter, numeric)
maxdepth, numeric)
nu, numeric)
Boosted Generalized Additive Model (method = 'gamboost')
For classification and regression using packages mboost and plyr with tuning parameters:
mstop, numeric)
prune, character)
Boosted Generalized Linear Model (method = 'glmboost')
For classification and regression using packages plyr and mboost with tuning parameters:
mstop, numeric)
prune, character)
Boosted Linear Model (method = 'BstLm')
For classification and regression using packages bst and plyr with tuning parameters:
mstop, numeric)
nu, numeric)
Boosted Logistic Regression (method = 'LogitBoost')
For classification using package caTools with tuning parameters:
nIter, numeric)
Boosted Smoothing Spline (method = 'bstSm')
For classification and regression using packages bst and plyr with tuning parameters:
mstop, numeric)
nu, numeric)
Boosted Tree (method = 'blackboost')
For classification and regression using packages party, mboost and plyr with tuning parameters:
mstop, numeric)
maxdepth, numeric)
Boosted Tree (method = 'bstTree')
For classification and regression using packages bst and plyr with tuning parameters:
mstop, numeric)
maxdepth, numeric)
nu, numeric)
C4.5-like Trees (method = 'J48')
For classification using package RWeka with tuning parameters:
C, numeric)
C5.0 (method = 'C5.0')
For classification using packages C50 and plyr with tuning parameters:
trials, numeric)
model, character)
winnow, logical)
CART (method = 'rpart')
For classification and regression using package rpart with tuning parameters:
cp, numeric)
CART (method = 'rpart1SE')
For classification and regression using package rpart with no tuning parameters
CART (method = 'rpart2')
For classification and regression using package rpart with tuning parameters:
maxdepth, numeric)
CART or Ordinal Responses (method = 'rpartScore')
For classification using packages rpartScore and plyr with tuning parameters:
cp, numeric)
split, character)
prune, character)
CHi-squared Automated Interaction Detection (method = 'chaid')
For classification using package CHAID with tuning parameters:
alpha2, numeric)
alpha3, numeric)
alpha4, numeric)
Conditional Inference Random Forest (method = 'cforest')
For classification and regression using package party with tuning parameters:
mtry, numeric)
Conditional Inference Tree (method = 'ctree')
For classification and regression using package party with tuning parameters:
mincriterion, numeric)
Conditional Inference Tree (method = 'ctree2')
For classification and regression using package party with tuning parameters:
maxdepth, numeric)
mincriterion, numeric)
Continuation Ratio Model for Ordinal Data (method = 'vglmContRatio')
For classification using package VGAM with tuning parameters:
parallel, logical)
link, character)
Cost-Sensitive C5.0 (method = 'C5.0Cost')
For classification using packages C50 and plyr with tuning parameters:
trials, numeric)
model, character)
winnow, logical)
cost, numeric)
Cost-Sensitive CART (method = 'rpartCost')
For classification using package rpart with tuning parameters:
cp, numeric)
Cost, numeric)
Cubist (method = 'cubist')
For regression using package Cubist with tuning parameters:
committees, numeric)
neighbors, numeric)
Cumulative Probability Model for Ordinal Data (method = 'vglmCumulative')
For classification using package VGAM with tuning parameters:
parallel, logical)
link, character)
DeepBoost (method = 'deepboost')
For classification using package deepboost with tuning parameters:
num_iter, numeric)
tree_depth, numeric)
beta, numeric)
lambda, numeric)
loss_type, character)
Diagonal Discriminant Analysis (method = 'dda')
For classification using package sparsediscrim with tuning parameters:
model, character)
shrinkage, character)
Distance Weighted Discrimination with Polynomial Kernel (method = 'dwdPoly')
For classification using package kerndwd with tuning parameters:
lambda, numeric)
qval, numeric)
degree, numeric)
scale, numeric)
Distance Weighted Discrimination with Radial Basis Function Kernel (method = 'dwdRadial')
For classification using packages kernlab and kerndwd with tuning parameters:
lambda, numeric)
qval, numeric)
sigma, numeric)
Dynamic Evolving Neural-Fuzzy Inference System (method = 'DENFIS')
For regression using package frbs with tuning parameters:
Dthr, numeric)
max.iter, numeric)
Elasticnet (method = 'enet')
For regression using package elasticnet with tuning parameters:
fraction, numeric)
lambda, numeric)
Ensemble Partial Least Squares Regression (method = 'enpls')
For regression using package enpls with tuning parameters:
maxcomp, numeric)
Ensemble Partial Least Squares Regression with Feature Selection (method = 'enpls.fs')
For regression using package enpls with tuning parameters:
maxcomp, numeric)
threshold, numeric)
Ensembles of Generalized Lienar Models (method = 'randomGLM')
For classification and regression using package randomGLM with tuning parameters:
maxInteractionOrder, numeric)
eXtreme Gradient Boosting (method = 'xgbLinear')
For classification and regression using package xgboost with tuning parameters:
nrounds, numeric)
lambda, numeric)
alpha, numeric)
eta, numeric)
eXtreme Gradient Boosting (method = 'xgbTree')
For classification and regression using packages xgboost and plyr with tuning parameters:
nrounds, numeric)
max_depth, numeric)
eta, numeric)
gamma, numeric)
colsample_bytree, numeric)
min_child_weight, numeric)
Extreme Learning Machine (method = 'elm')
For classification and regression using package elmNN with tuning parameters:
nhid, numeric)
actfun, character)
Factor-Based Linear Discriminant Analysis (method = 'RFlda')
For classification using package HiDimDA with tuning parameters:
q, numeric)
Flexible Discriminant Analysis (method = 'fda')
For classification using packages earth and mda with tuning parameters:
degree, numeric)
nprune, numeric)
Fuzzy Inference Rules by Descent Method (method = 'FIR.DM')
For regression using package frbs with tuning parameters:
num.labels, numeric)
max.iter, numeric)
Fuzzy Rules Using Chi's Method (method = 'FRBCS.CHI')
For classification using package frbs with tuning parameters:
num.labels, numeric)
type.mf, character)
Fuzzy Rules Using Genetic Cooperative-Competitive Learning (method = 'GFS.GCCL')
For classification using package frbs with tuning parameters:
num.labels, numeric)
popu.size, numeric)
max.gen, numeric)
Fuzzy Rules Using Genetic Cooperative-Competitive Learning and Pittsburgh (method = 'FH.GBML')
For classification using package frbs with tuning parameters:
max.num.rule, numeric)
popu.size, numeric)
max.gen, numeric)
Fuzzy Rules Using the Structural Learning Algorithm on Vague Environment (method = 'SLAVE')
For classification using package frbs with tuning parameters:
num.labels, numeric)
max.iter, numeric)
max.gen, numeric)
Fuzzy Rules via MOGUL (method = 'GFS.FR.MOGUL')
For regression using package frbs with tuning parameters:
max.gen, numeric)
max.iter, numeric)
max.tune, numeric)
Fuzzy Rules via Thrift (method = 'GFS.THRIFT')
For regression using package frbs with tuning parameters:
popu.size, numeric)
num.labels, numeric)
max.gen, numeric)
Fuzzy Rules with Weight Factor (method = 'FRBCS.W')
For classification using package frbs with tuning parameters:
num.labels, numeric)
type.mf, character)
Gaussian Process (method = 'gaussprLinear')
For classification and regression using package kernlab with no tuning parameters
Gaussian Process with Polynomial Kernel (method = 'gaussprPoly')
For classification and regression using package kernlab with tuning parameters:
degree, numeric)
scale, numeric)
Gaussian Process with Radial Basis Function Kernel (method = 'gaussprRadial')
For classification and regression using package kernlab with tuning parameters:
sigma, numeric)
Generalized Additive Model using LOESS (method = 'gamLoess')
For classification and regression using package gam with tuning parameters:
span, numeric)
degree, numeric)
Generalized Additive Model using Splines (method = 'bam')
For classification and regression using package mgcv with tuning parameters:
select, logical)
method, character)
Generalized Additive Model using Splines (method = 'gam')
For classification and regression using package mgcv with tuning parameters:
select, logical)
method, character)
Generalized Additive Model using Splines (method = 'gamSpline')
For classification and regression using package gam with tuning parameters:
df, numeric)
Generalized Linear Model (method = 'glm')
For classification and regression with no tuning parameters
Generalized Linear Model with Stepwise Feature Selection (method = 'glmStepAIC')
For classification and regression using package MASS with no tuning parameters
Generalized Partial Least Squares (method = 'gpls')
For classification using package gpls with tuning parameters:
K.prov, numeric)
Genetic Lateral Tuning and Rule Selection of Linguistic Fuzzy Systems (method = 'GFS.LT.RS')
For regression using package frbs with tuning parameters:
popu.size, numeric)
num.labels, numeric)
max.gen, numeric)
glmnet (method = 'glmnet')
For classification and regression using package glmnet with tuning parameters:
alpha, numeric)
lambda, numeric)
Greedy Prototype Selection (method = 'protoclass')
For classification using packages proxy and protoclass with tuning parameters:
eps, numeric)
Minkowski, numeric)
Heteroscedastic Discriminant Analysis (method = 'hda')
For classification using package hda with tuning parameters:
gamma, numeric)
lambda, numeric)
newdim, numeric)
High Dimensional Discriminant Analysis (method = 'hdda')
For classification using package HDclassif with tuning parameters:
threshold, character)
model, numeric)
High-Dimensional Regularized Discriminant Analysis (method = 'hdrda')
For classification using package sparsediscrim with tuning parameters:
gamma, numeric)
lambda, numeric)
shrinkage_type, character)
Hybrid Neural Fuzzy Inference System (method = 'HYFIS')
For regression using package frbs with tuning parameters:
num.labels, numeric)
max.iter, numeric)
Independent Component Regression (method = 'icr')
For regression using package fastICA with tuning parameters:
n.comp, numeric)
k-Nearest Neighbors (method = 'kknn')
For classification and regression using package kknn with tuning parameters:
kmax, numeric)
distance, numeric)
kernel, character)
k-Nearest Neighbors (method = 'knn')
For classification and regression with tuning parameters:
k, numeric)
Knn regression via sklearn.neighbors.KNeighborsRegressor (method = 'pythonKnnReg')
For regression using package rPython with tuning parameters:
n_neighbors, numeric)
weights, character)
algorithm, character)
leaf_size, numeric)
metric, character)
p, numeric)
L2 Regularized Linear Support Vector Machines with Class Weights (method = 'svmLinearWeights2')
For classification using package LiblineaR with tuning parameters:
cost, numeric)
Loss, character)
weight, numeric)
L2 Regularized Support Vector Machine (dual) with Linear Kernel (method = 'svmLinear3')
For classification and regression using package LiblineaR with tuning parameters:
cost, numeric)
Loss, character)
Learning Vector Quantization (method = 'lvq')
For classification using package class with tuning parameters:
size, numeric)
k, numeric)
Least Angle Regression (method = 'lars')
For regression using package lars with tuning parameters:
fraction, numeric)
Least Angle Regression (method = 'lars2')
For regression using package lars with tuning parameters:
step, numeric)
Least Squares Support Vector Machine (method = 'lssvmLinear')
For classification using package kernlab with tuning parameters:
tau, numeric)
Least Squares Support Vector Machine with Polynomial Kernel (method = 'lssvmPoly')
For classification using package kernlab with tuning parameters:
degree, numeric)
scale, numeric)
tau, numeric)
Least Squares Support Vector Machine with Radial Basis Function Kernel (method = 'lssvmRadial')
For classification using package kernlab with tuning parameters:
sigma, numeric)
tau, numeric)
Linear Discriminant Analysis (method = 'lda')
For classification using package MASS with no tuning parameters
Linear Discriminant Analysis (method = 'lda2')
For classification using package MASS with tuning parameters:
dimen, numeric)
Linear Discriminant Analysis with Stepwise Feature Selection (method = 'stepLDA')
For classification using packages klaR and MASS with tuning parameters:
maxvar, numeric)
direction, character)
Linear Distance Weighted Discrimination (method = 'dwdLinear')
For classification using package kerndwd with tuning parameters:
lambda, numeric)
qval, numeric)
Linear Regression (method = 'lm')
For regression with tuning parameters:
intercept, logical)
Linear Regression with Backwards Selection (method = 'leapBackward')
For regression using package leaps with tuning parameters:
nvmax, numeric)
Linear Regression with Forward Selection (method = 'leapForward')
For regression using package leaps with tuning parameters:
nvmax, numeric)
Linear Regression with Stepwise Selection (method = 'leapSeq')
For regression using package leaps with tuning parameters:
nvmax, numeric)
Linear Regression with Stepwise Selection (method = 'lmStepAIC')
For regression using package MASS with no tuning parameters
Linear Support Vector Machines with Class Weights (method = 'svmLinearWeights')
For classification using package e1071 with tuning parameters:
cost, numeric)
weight, numeric)
Localized Linear Discriminant Analysis (method = 'loclda')
For classification using package klaR with tuning parameters:
k, numeric)
Logic Regression (method = 'logreg')
For classification and regression using package LogicReg with tuning parameters:
treesize, numeric)
ntrees, numeric)
Logistic Model Trees (method = 'LMT')
For classification using package RWeka with tuning parameters:
iter, numeric)
Maximum Uncertainty Linear Discriminant Analysis (method = 'Mlda')
For classification using package HiDimDA with no tuning parameters
Mixture Discriminant Analysis (method = 'mda')
For classification using package mda with tuning parameters:
subclasses, numeric)
Model Averaged Naive Bayes Classifier (method = 'manb')
For classification using package bnclassify with tuning parameters:
smooth, numeric)
prior, numeric)
Model Averaged Neural Network (method = 'avNNet')
For classification and regression using package nnet with tuning parameters:
size, numeric)
decay, numeric)
bag, logical)
Model Rules (method = 'M5Rules')
For regression using package RWeka with tuning parameters:
pruned, character)
smoothed, character)
Model Tree (method = 'M5')
For regression using package RWeka with tuning parameters:
pruned, character)
smoothed, character)
rules, character)
Multi-Layer Perceptron (method = 'mlp')
For classification and regression using package RSNNS with tuning parameters:
size, numeric)
Multi-Layer Perceptron (method = 'mlpWeightDecay')
For classification and regression using package RSNNS with tuning parameters:
size, numeric)
decay, numeric)
Multi-Layer Perceptron, multiple layers (method = 'mlpWeightDecayML')
For classification and regression using package RSNNS with tuning parameters:
layer1, numeric)
layer2, numeric)
layer3, numeric)
decay, numeric)
Multi-Layer Perceptron, with multiple layers (method = 'mlpML')
For classification and regression using package RSNNS with tuning parameters:
layer1, numeric)
layer2, numeric)
layer3, numeric)
Multilayer Perceptron Network by Stochastic Gradient Descent (method = 'mlpSGD')
For regression using package FCNN4R with tuning parameters:
size, numeric)
l2reg, numeric)
lambda, numeric)
learn_rate, numeric)
momentum, numeric)
gamma, numeric)
minibatchsz, numeric)
repeats, numeric)
Multivariate Adaptive Regression Spline (method = 'earth')
For classification and regression using package earth with tuning parameters:
nprune, numeric)
degree, numeric)
Multivariate Adaptive Regression Splines (method = 'gcvEarth')
For classification and regression using package earth with tuning parameters:
degree, numeric)
Naive Bayes (method = 'nb')
For classification using package klaR with tuning parameters:
fL, numeric)
usekernel, logical)
adjust, numeric)
Naive Bayes Classifier (method = 'nbDiscrete')
For classification using package bnclassify with tuning parameters:
smooth, numeric)
Naive Bayes Classifier with Attribute Weighting (method = 'awnb')
For classification using package bnclassify with tuning parameters:
smooth, numeric)
Nearest Shrunken Centroids (method = 'pam')
For classification using package pamr with tuning parameters:
threshold, numeric)
Neural Network (method = 'neuralnet')
For regression using package neuralnet with tuning parameters:
layer1, numeric)
layer2, numeric)
layer3, numeric)
Neural Network (method = 'nnet')
For classification and regression using package nnet with tuning parameters:
size, numeric)
decay, numeric)
Neural Networks with Feature Extraction (method = 'pcaNNet')
For classification and regression using package nnet with tuning parameters:
size, numeric)
decay, numeric)
Non-Convex Penalized Quantile Regression (method = 'rqnc')
For regression using package rqPen with tuning parameters:
lambda, numeric)
penalty, character)
Non-Negative Least Squares (method = 'nnls')
For regression using package nnls with no tuning parameters
Oblique Random Forest (method = 'ORFlog')
For classification using package obliqueRF with tuning parameters:
mtry, numeric)
Oblique Random Forest (method = 'ORFpls')
For classification using package obliqueRF with tuning parameters:
mtry, numeric)
Oblique Random Forest (method = 'ORFridge')
For classification using package obliqueRF with tuning parameters:
mtry, numeric)
Oblique Random Forest (method = 'ORFsvm')
For classification using package obliqueRF with tuning parameters:
mtry, numeric)
Oblique Trees (method = 'oblique.tree')
For classification using package oblique.tree with tuning parameters:
oblique.splits, character)
variable.selection, character)
Optimal Weighted Nearest Neighbor Classifier (method = 'ownn')
For classification using package snn with tuning parameters:
K, numeric)
Ordered Logistic or Probit Regression (method = 'polr')
For classification using package MASS with tuning parameters:
method, character)
Parallel Random Forest (method = 'parRF')
For classification and regression using packages e1071, randomForest and foreach with tuning parameters:
mtry, numeric)
partDSA (method = 'partDSA')
For classification and regression using package partDSA with tuning parameters:
cut.off.growth, numeric)
MPD, numeric)
Partial Least Squares (method = 'kernelpls')
For classification and regression using package pls with tuning parameters:
ncomp, numeric)
Partial Least Squares (method = 'pls')
For classification and regression using package pls with tuning parameters:
ncomp, numeric)
Partial Least Squares (method = 'simpls')
For classification and regression using package pls with tuning parameters:
ncomp, numeric)
Partial Least Squares (method = 'widekernelpls')
For classification and regression using package pls with tuning parameters:
ncomp, numeric)
Partial Least Squares Generalized Linear Models (method = 'plsRglm')
For classification and regression using package plsRglm with tuning parameters:
nt, numeric)
alpha.pvals.expli, numeric)
Penalized Discriminant Analysis (method = 'pda')
For classification using package mda with tuning parameters:
lambda, numeric)
Penalized Discriminant Analysis (method = 'pda2')
For classification using package mda with tuning parameters:
df, numeric)
Penalized Linear Discriminant Analysis (method = 'PenalizedLDA')
For classification using packages penalizedLDA and plyr with tuning parameters:
lambda, numeric)
K, numeric)
Penalized Linear Regression (method = 'penalized')
For regression using package penalized with tuning parameters:
lambda1, numeric)
lambda2, numeric)
Penalized Logistic Regression (method = 'plr')
For classification using package stepPlr with tuning parameters:
lambda, numeric)
cp, character)
Penalized Multinomial Regression (method = 'multinom')
For classification using package nnet with tuning parameters:
decay, numeric)
Penalized Ordinal Regression (method = 'ordinalNet')
For classification and regression using packages ordinalNet and plyr with tuning parameters:
alpha, numeric)
criteria, character)
link, character)
Polynomial Kernel Regularized Least Squares (method = 'krlsPoly')
For regression using package KRLS with tuning parameters:
lambda, numeric)
degree, numeric)
Principal Component Analysis (method = 'pcr')
For regression using package pls with tuning parameters:
ncomp, numeric)
Projection Pursuit Regression (method = 'ppr')
For regression with tuning parameters:
nterms, numeric)
Quadratic Discriminant Analysis (method = 'qda')
For classification using package MASS with no tuning parameters
Quadratic Discriminant Analysis with Stepwise Feature Selection (method = 'stepQDA')
For classification using packages klaR and MASS with tuning parameters:
maxvar, numeric)
direction, character)
Quantile Random Forest (method = 'qrf')
For regression using package quantregForest with tuning parameters:
mtry, numeric)
Quantile Regression Neural Network (method = 'qrnn')
For regression using package qrnn with tuning parameters:
n.hidden, numeric)
penalty, numeric)
bag, logical)
Quantile Regression with LASSO penalty (method = 'rqlasso')
For regression using package rqPen with tuning parameters:
lambda, numeric)
Radial Basis Function Kernel Regularized Least Squares (method = 'krlsRadial')
For regression using packages KRLS and kernlab with tuning parameters:
lambda, numeric)
sigma, numeric)
Radial Basis Function Network (method = 'rbf')
For classification and regression using package RSNNS with tuning parameters:
size, numeric)
Radial Basis Function Network (method = 'rbfDDA')
For classification and regression using package RSNNS with tuning parameters:
negativeThreshold, numeric)
Random Ferns (method = 'rFerns')
For classification using package rFerns with tuning parameters:
depth, numeric)
Random Forest (method = 'ranger')
For classification and regression using packages e1071 and ranger with tuning parameters:
mtry, numeric)
Random Forest (method = 'Rborist')
For classification and regression using package Rborist with tuning parameters:
predFixed, numeric)
Random Forest (method = 'rf')
For classification and regression using package randomForest with tuning parameters:
mtry, numeric)
Random Forest by Randomization (method = 'extraTrees')
For classification and regression using package extraTrees with tuning parameters:
mtry, numeric)
numRandomCuts, numeric)
Random Forest Rule-Based Model (method = 'rfRules')
For classification and regression using packages randomForest, inTrees and plyr with tuning parameters:
mtry, numeric)
maxdepth, numeric)
Random Forest with Additional Feature Selection (method = 'Boruta')
For classification and regression using packages Boruta and randomForest with tuning parameters:
mtry, numeric)
Regularized Discriminant Analysis (method = 'rda')
For classification using package klaR with tuning parameters:
gamma, numeric)
lambda, numeric)
Regularized Linear Discriminant Analysis (method = 'rlda')
For classification using package sparsediscrim with tuning parameters:
estimator, character)
Regularized Random Forest (method = 'RRF')
For classification and regression using packages randomForest and RRF with tuning parameters:
mtry, numeric)
coefReg, numeric)
coefImp, numeric)
Regularized Random Forest (method = 'RRFglobal')
For classification and regression using package RRF with tuning parameters:
mtry, numeric)
coefReg, numeric)
Relaxed Lasso (method = 'relaxo')
For regression using packages relaxo and plyr with tuning parameters:
lambda, numeric)
phi, numeric)
Relevance Vector Machines with Linear Kernel (method = 'rvmLinear')
For regression using package kernlab with no tuning parameters
Relevance Vector Machines with Polynomial Kernel (method = 'rvmPoly')
For regression using package kernlab with tuning parameters:
scale, numeric)
degree, numeric)
Relevance Vector Machines with Radial Basis Function Kernel (method = 'rvmRadial')
For regression using package kernlab with tuning parameters:
sigma, numeric)
Ridge Regression (method = 'ridge')
For regression using package elasticnet with tuning parameters:
lambda, numeric)
Ridge Regression with Variable Selection (method = 'foba')
For regression using package foba with tuning parameters:
k, numeric)
lambda, numeric)
Robust Linear Discriminant Analysis (method = 'Linda')
For classification using package rrcov with no tuning parameters
Robust Linear Model (method = 'rlm')
For regression using package MASS with tuning parameters:
intercept, logical)
psi, character)
Robust Mixture Discriminant Analysis (method = 'rmda')
For classification using package robustDA with tuning parameters:
K, numeric)
model, character)
Robust Quadratic Discriminant Analysis (method = 'QdaCov')
For classification using package rrcov with no tuning parameters
Robust Regularized Linear Discriminant Analysis (method = 'rrlda')
For classification using package rrlda with tuning parameters:
lambda, numeric)
hp, numeric)
penalty, character)
Robust SIMCA (method = 'RSimca')
For classification using package rrcovHD with no tuning parameters
ROC-Based Classifier (method = 'rocc')
For classification using package rocc with tuning parameters:
xgenes, numeric)
Rotation Forest (method = 'rotationForest')
For classification using package rotationForest with tuning parameters:
K, numeric)
L, numeric)
Rotation Forest (method = 'rotationForestCp')
For classification using packages rpart, plyr and rotationForest with tuning parameters:
K, numeric)
L, numeric)
cp, numeric)
Rule-Based Classifier (method = 'JRip')
For classification using package RWeka with tuning parameters:
NumOpt, numeric)
Rule-Based Classifier (method = 'PART')
For classification using package RWeka with tuning parameters:
threshold, numeric)
pruned, character)
Self-Organizing Map (method = 'bdk')
For classification and regression using package kohonen with tuning parameters:
xdim, numeric)
ydim, numeric)
xweight, numeric)
topo, character)
Self-Organizing Maps (method = 'xyf')
For classification and regression using package kohonen with tuning parameters:
xdim, numeric)
ydim, numeric)
xweight, numeric)
topo, character)
Semi-Naive Structure Learner Wrapper (method = 'nbSearch')
For classification using package bnclassify with tuning parameters:
k, numeric)
epsilon, numeric)
smooth, numeric)
final_smooth, numeric)
direction, character)
Shrinkage Discriminant Analysis (method = 'sda')
For classification using package sda with tuning parameters:
diagonal, logical)
lambda, numeric)
SIMCA (method = 'CSimca')
For classification using package rrcovHD with no tuning parameters
Simplified TSK Fuzzy Rules (method = 'FS.HGD')
For regression using package frbs with tuning parameters:
num.labels, numeric)
max.iter, numeric)
Single C5.0 Ruleset (method = 'C5.0Rules')
For classification using package C50 with no tuning parameters
Single C5.0 Tree (method = 'C5.0Tree')
For classification using package C50 with no tuning parameters
Single Rule Classification (method = 'OneR')
For classification using package RWeka with no tuning parameters
Sparse Distance Weighted Discrimination (method = 'sdwd')
For classification using package sdwd with tuning parameters:
lambda, numeric)
lambda2, numeric)
Sparse Linear Discriminant Analysis (method = 'sparseLDA')
For classification using package sparseLDA with tuning parameters:
NumVars, numeric)
lambda, numeric)
Sparse Mixture Discriminant Analysis (method = 'smda')
For classification using package sparseLDA with tuning parameters:
NumVars, numeric)
lambda, numeric)
R, numeric)
Sparse Partial Least Squares (method = 'spls')
For classification and regression using package spls with tuning parameters:
K, numeric)
eta, numeric)
kappa, numeric)
Spike and Slab Regression (method = 'spikeslab')
For regression using packages spikeslab and plyr with tuning parameters:
vars, numeric)
Stabilized Linear Discriminant Analysis (method = 'slda')
For classification using package ipred with no tuning parameters
Stabilized Nearest Neighbor Classifier (method = 'snn')
For classification using package snn with tuning parameters:
lambda, numeric)
Stacked AutoEncoder Deep Neural Network (method = 'dnn')
For classification and regression using package deepnet with tuning parameters:
layer1, numeric)
layer2, numeric)
layer3, numeric)
hidden_dropout, numeric)
visible_dropout, numeric)
Stepwise Diagonal Linear Discriminant Analysis (method = 'sddaLDA')
For classification using package SDDA with no tuning parameters
Stepwise Diagonal Quadratic Discriminant Analysis (method = 'sddaQDA')
For classification using package SDDA with no tuning parameters
Stochastic Gradient Boosting (method = 'gbm')
For classification and regression using packages gbm and plyr with tuning parameters:
n.trees, numeric)
interaction.depth, numeric)
shrinkage, numeric)
n.minobsinnode, numeric)
Subtractive Clustering and Fuzzy c-Means Rules (method = 'SBC')
For regression using package frbs with tuning parameters:
r.a, numeric)
eps.high, numeric)
eps.low, numeric)
Supervised Principal Component Analysis (method = 'superpc')
For regression using package superpc with tuning parameters:
threshold, numeric)
n.components, numeric)
Support Vector Machines with Boundrange String Kernel (method = 'svmBoundrangeString')
For classification and regression using package kernlab with tuning parameters:
length, numeric)
C, numeric)
Support Vector Machines with Class Weights (method = 'svmRadialWeights')
For classification using package kernlab with tuning parameters:
sigma, numeric)
C, numeric)
Weight, numeric)
Support Vector Machines with Exponential String Kernel (method = 'svmExpoString')
For classification and regression using package kernlab with tuning parameters:
lambda, numeric)
C, numeric)
Support Vector Machines wit
train'' (http://caret.r-forge.r-project.org/custom_models.html)