
Last chance! 50% off unlimited learning
Sale ends in
These functions plot the resampling results for the candidate subset sizes evaluated during the recursive feature elimination (RFE) process
# S3 method for rfe
ggplot(data = NULL, mapping = NULL,
metric = data$metric[1], output = "layered", ...,
environment = NULL)# S3 method for rfe
plot(x, metric = x$metric, ...)
an object of class rfe
.
unused arguments to make consistent with ggplot2 generic method
What measure of performance to plot. Examples of possible values are "RMSE", "Rsquared", "Accuracy" or "Kappa". Other values can be used depending on what metrics have been calculated.
either "data", "ggplot" or "layered". The first returns a data
frame while the second returns a simple ggplot
object with no layers.
The third value returns a plot with a set of layers.
plot
only: specifications to be passed to
xyplot
. The function automatically sets some
arguments (e.g. axis labels) but passing in values here will over-ride the
defaults.
an object of class rfe
.
a lattice or ggplot object
These plots show the average performance versus the subset sizes.
Kuhn (2008), ``Building Predictive Models in R Using the caret'' (http://www.jstatsoft.org/article/view/v028i05/v28i05.pdf)
# NOT RUN {
# }
# NOT RUN {
data(BloodBrain)
x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
x <- x[, -findCorrelation(cor(x), .8)]
x <- as.data.frame(x)
set.seed(1)
lmProfile <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
number = 200))
plot(lmProfile)
plot(lmProfile, metric = "Rsquared")
ggplot(lmProfile)
# }
Run the code above in your browser using DataLab