These classes can be used to estimate transformations and apply them to existing and future data
BoxCoxTrans(y, ...)# S3 method for default
BoxCoxTrans(
y,
x = rep(1, length(y)),
fudge = 0.2,
numUnique = 3,
na.rm = FALSE,
...
)
# S3 method for BoxCoxTrans
print(x, newdata, digits = 3, ...)
# S3 method for BoxCoxTrans
predict(object, newdata, ...)
Both functions returns a list of class of either BoxCoxTrans or expoTrans with
elements
estimated transformation value
value of fudge
number of data points used to estimate lambda
the results of summary(y)
max(y)/min(y)
sample skewness statistic
BoxCoxTrans also returns:
value of fudge
The predict functions returns numeric vectors of transformed values
a numeric vector of data to be transformed. For BoxCoxTrans, the data must be strictly positive.
for BoxCoxTrans: options to pass to boxcox. plotit should not be passed through. For predict.BoxCoxTrans, additional arguments are ignored.
an optional dependent variable to be used in a linear model.
a tolerance value: lambda values within +/-fudge will be coerced to 0 and within 1+/-fudge will be coerced to 1.
how many unique values should y have to estimate the transformation?
a logical value indicating whether NA values should be stripped from y and x before the computation proceeds.
a numeric vector of values to transform.
minimal number of significant digits.
an object of class BoxCoxTrans or expoTrans.
Max Author
BoxCoxTrans function is basically a wrapper for the boxcox function in the MASS library. It can be used to estimate the transformation and apply it to new data.
expoTrans estimates the exponential transformation of Manly (1976) but assumes a common mean for
the data. The transformation parameter is estimated by directly maximizing the likelihood.
If any(y <= 0) or if length(unique(y)) < numUnique, lambda is not estimated and no
transformation is applied.
Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion). Journal of the Royal Statistical Society B, 26, 211-252. Manly, B. L. (1976) Exponential data transformations. The Statistician, 25, 37 - 42.
data(BloodBrain)
ratio <- exp(logBBB)
bc <- BoxCoxTrans(ratio)
bc
predict(bc, ratio[1:5])
ratio[5] <- NA
bc2 <- BoxCoxTrans(ratio, bbbDescr$tpsa, na.rm = TRUE)
bc2
manly <- expoTrans(ratio)
manly
Run the code above in your browser using DataLab