Learn R Programming

caretSDM (version 1.1.0.1)

gcms_ensembles: Ensemble GCMs into one scenario

Description

An ensembling method to group different GCMs into one SSP scenario

Usage

gcms_ensembles(i, gcms = NULL)

Value

A input_sdm object with grouped GCMs.

Arguments

i

A input_sdm object.

gcms

GCM codes in scenarios_names(i) to group scenarios.

Author

Luíz Fernando Esser (luizesser@gmail.com) https://luizfesser.wordpress.com

See Also

GBIF_data occurrences_sdm sdm_area input_sdm predictors

Examples

Run this code
# Create sdm_area object:
set.seed(1)
sa <- sdm_area(parana, cell_size = 100000, crs = 6933)

# Include predictors:
sa <- add_predictors(sa, bioc)

# Include scenarios:
sa <- add_scenarios(sa, scen) |> select_predictors(c("bio1", "bio12"))

# Create occurrences:
oc <- occurrences_sdm(occ, crs = 6933) |> join_area(sa)

# Create input_sdm:
i <- input_sdm(oc, sa)

# Pseudoabsence generation:
i <- pseudoabsences(i, method="random", n_set = 2)

# Custom trainControl:
ctrl_sdm <- caret::trainControl(method = "boot",
                                number = 1,
                                classProbs = TRUE,
                                returnResamp = "all",
                                summaryFunction = summary_sdm,
                                savePredictions = "all")

# Train models:
i <- train_sdm(i,
               algo = c("naive_bayes"),
               ctrl=ctrl_sdm,
               variables_selected = c("bio1", "bio12")) |>
  suppressWarnings()

# Predict models:
i  <- predict_sdm(i, th=0.8)

#' # Ensemble GCMs:
i <- gcms_ensembles(i, gcms = c("ca", "mi"))
i

Run the code above in your browser using DataLab