Learn R Programming

cata (version 0.1.0.27)

homogeneity: Calculate within-cluster homogeneity

Description

Within a group of N consumers, the Homogeneity index lies between 1/N (no homogeneity) to 1 (perfect homogeneity).

Usage

homogeneity(X, oneI = FALSE, oneM = FALSE)

Value

homogeneity index

Arguments

X

three-way array; the \(I \times J \times M\) array has \(I\) assessors, \(J\) products, \(M\) attributes where CATA data have values 0 (not checked) and 1 (checked)

oneI

indicates whether calculation is for one assessor (default: FALSE)

oneM

indicates whether calculation is for one attribute (default: FALSE)

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E.M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39, tools:::Rd_expr_doi("10.1016/j.foodqual.2018.09.006")

Examples

Run this code
data(bread)

# homogeneity index for the first 7 consumers on the first 6 attributes
homogeneity(bread$cata[1:7,,1:6])

Run the code above in your browser using DataLab