Learn R Programming

catdata (version 1.2.4)

catdata-package: Categorical Data

Description

This R-package contains examples from the book

Tutz (2012): Regression for Categorical Data, Cambridge University Press

The names of the examples refer to the chapter and the data set that is used.

The data sets are

addiction,
aids,
birth,
children,
deathpenalty,
dust,
encephalitis,
foodstamp,
insolvency,
knee,
leucoplakia,
medcare,
reader,
recovery,
rent,
rethinopathy,
teratology,
teratology2,
unemployment,
vaso.

The chapters are abbreviated in the following way

introChapter 1Introduction
binaryChapter 2Binary Regression: The Logit Model
glmChapter 3Generalized Linear Models
modbinChapter 4Modeling of Binary Data
altbinChapter 5Alternative Binary Regression Models
regselChapter 6Regularization and Variable Selection for Parametric Models (vignettes were removed)
countChapter 7Regression Analysis of Count Data
multinomialChapter 8Multinomial Response Models
ordinalChapter 9Ordinal Response Models
semiparametricChapter 10Semi- and Nonparametric Generalized Regression
treeChapter 11Tree-Based Methods
loglinearChapter 12The Analysis of Contingency Tables
multivariateChapter 13Multivariate Response Models
randomChapter 14Random Effects and Finite Mixtures
predictionChapter 15Prediction and Classification

The examples are abbreviated by chaptername-dataset. Thus, for example,

modbin-dust

refers to Chapter 4 (Modeling of Binary Data) and the data set dust.

Overview of examples:

  • Chapter 2:

    • binary-vaso: Example 2.2

    • binary-unemployment: Example 2.3

  • Chapter 4:

    • modbin-unemployment: Example 4.3

    • modbin-foodstamp: Example 4.4

    • modbin-dust: Example 4.7

  • Chapter 5:

    • altbin-teratology: Example 5.1

  • Chapter 7:

    • count-children: Example 7.3

    • count-encephalitis: Example 7.4

    • count-insolvency: Example 7.5

    • count-medcare: Example 7.6

  • Chapter 8:

    • multinomial-party1: Example 8.3

    • multinomial-party2: Example 8.3

    • multinomial-travel: Example 8.4

    • multinomial-addiction1: Example 8.5

    • multinomial-addiction2: Example 8.6

  • Chapter 9:

    • ordinal-knee1: Example 9.3

    • ordinal-knee2: Example 9.4

    • ordinal-retinopathy1: Example 9.5

    • ordinal-retinopathy2: Example 9.6

    • ordinal-arthritis: Example 9.8

  • Chapter 10:

    • semiparametric-unemployment: Example 10.2

    • semiparametric-dust: Example 10.3

    • semiparametric-children: Example 10.4

    • semiparametric-addiction: Example 10.5

  • Chapter 11:

    • tree-unemployment: Example 11.1

    • tree-dust: Example 11.2

  • Chapter 12:

    • loglinear-birth: Example 12.3

    • loglinear-leukoplakia: Example 12.5

  • Chapter 13:

    • multivariate-birth1: Examlpe 13.3

    • multivariate-knee: Example 13.4

    • multivariate-birth2: Example 13.5

  • Chapter 14:

    • random-knee1: Example 14.3

    • random-knee2: Example 14.4

    • random-aids: Example 14.6

    • random-betablocker: Example 14.7

    • random-knee3: Example 14.8

  • Chapter 15:

    • prediction-glass: Example 15.4 (vignette was removed)

    • prediction-medcare: Example 15.8

Arguments

Author

Gerhard Tutz and Gunther Schauberger with contributions from Sarah Maierhofer and Marcus Groß

Maintainer:
Gunther Schauberger <gunther.schauberger@tum.de>
Gerhard Tutz <gerhard.tutz@stat.uni-muenchen.de>

References

Gerhard Tutz (2012), Regression for Categorical Data, Cambridge University Press

Examples

Run this code
if (FALSE) {
if(interactive()){vignette("modbin-dust")}
}

Run the code above in your browser using DataLab