## Replicate O'Bryan et al. (2018)
# Exemplars
stim = matrix(c(
1,1,0,0,0,0, 1,
1,0,1,0,0,0, 2,
0,0,0,1,1,0, 3,
0,0,0,1,0,1, 4), ncol = 7, byrow = TRUE)
# Transfer/test stimuli
# This is a row for each unique transfer stimulus
tr = matrix(c(
1, 1, 0, 0, 0, 0, #0,1,2
1, 0, 1, 0, 0, 0, #3
0, 0, 0, 1, 1, 0, #4,5,6
0, 0, 0, 1, 0, 1, #7
1, 0, 0, 0, 0, 0, #8
0, 0, 0, 1, 0, 0, #9
0, 1, 0, 0, 0, 0, #10
0, 0, 1, 0, 0, 0, #11
0, 0, 0, 0, 1, 0, #12
0, 0, 0, 0, 0, 1, #13
0, 1, 1, 0, 0, 0, #14, 15
0, 0, 0, 0, 1, 1, #16, 17
1, 0, 0, 0, 1, 0, #18
1, 0, 0, 0, 0, 1, #19
0, 1, 0, 1, 0, 0, #20
0, 0, 1, 1, 0, 0, #21
0, 0, 1, 0, 1, 0, #22, 23
0, 1, 0, 0, 0, 1 #24, 25
),
ncol = 6,
byrow = TRUE)
# parameters from paper
aweights = c(0.27692188, 0.66524089, 0.88723335, 0.16967400, 0.71206208,
0.87939732)
st <- list(attentional_weights = aweights/sum(abs(aweights)),
c = 9.04906080,
s = 0.94614863,
b = 0.02250668,
t = c(3, 1, 3, 1),
beta = c(1, 1, 1, 1)/4,
gamma = 1,
theta = 0.4,
r = 1,
colskip = 1,
outcomes = 4,
exemplars = stim)
slpDGCM(st, tr, exemplar_decay = FALSE, exemplar_mute = TRUE, dec = "NOISE")
Run the code above in your browser using DataLab