Learn R Programming

ccChooser (version 0.2.6)

evalucc: Evaluation of core collection.

Description

This function evaluation efficiency of the new core collection, using the four parameters.

Usage

evalucc(CC, EC)

Arguments

CC
data frame including value of quantitaive traits (phenotypic data) for core collection
EC
data frame including value of quantitaive traits (phenotypic data) for entire collection

Value

  • Return a matrix present a value of four parameters- DD

Details

The DDThe MDThe VDThe RR

References

For information about the evaluation of core collection, see: Franco J., Crossa J., Taba S., Shands H. 2005. A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci. 45:1035-1044 Hu J., Zhu J., Xu H.M. 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics 101:264-268 Kim K.W., Chung H.K., Cho G.T., Ma K.H., Chandrabalan D., Gwag J.G., Kim T.S., Cho E.G., Park Y.J. 2007. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155-2162 Studnicki, M., Madry, W., Kociuba, W. 2010. The efficiency and effectiveness of sampling strategies used to develop a core collection for the Polish spring triticale (Triticosecale Wittm.) germplasm resources. Communications in Biometry and Crop Science 5:127-137 Wang J., Hu J., Zhang C.F., Zhang S. 2007. A strategy on constructing core collections by least distance stepwise sampling. Theoretical and Applied Genetics 15:1-8

Examples

Run this code
data(dactylis_CC)
data(dactylis_EC)
dactylis_EC<-subset(dactylis_EC, select= -UPGMA)
evalucc(dactylis_CC, dactylis_EC)

Run the code above in your browser using DataLab