Learn R Programming

cccrm (version 1.1)

ccclon: Longitudinal Repeated Measures Concordance Correlation Coefficient estimated by Variance Components

Description

Estimates the concordance correlation coefficient for repeated measurements using the variance components from a linear mixed model.

Usage

ccclon(dataset,ry,rind,rtime,rmet,covar=NULL,rho=0)
## S3 method for class 'default':
ccclon(dataset,ry,rind,rtime,rmet,covar=NULL,rho=0)
## S3 method for class 'ccclon':
print(x,...)
## S3 method for class 'ccclon':
summary(object,...)
## S3 method for class 'summary.ccclon':
print(x,...)

Arguments

dataset
Name of data set
ry
Character string indicating the outcome in data set
rind
Character string indicating the subject variable in data set
rmet
Character string indicating the method variable in data set
rtime
Character string indicating the time variable in data set
covar
Character vector indicating the covariables
rho
Within subject correlation structure. The value 0 stands for compound symmetry and 1 for autoregressive order one
x
Object class ccclon
object
Object class ccclon
...
other arguments to be passed to print or summary

Value

  • An object of class ccclon.The generic function print and summary gives the estimates of the concordance correlation coefficient. The object ccclon contains the following components:
  • modelLinear mixed model output
  • vcVariance Components estimates
  • sigmaAn approximate covariance matrix for the variance components
  • ccc.pThe Concordance Correlation Coefficient estimate
  • ccc.iVector containing the Concordance Correlation Coefficient estimate, standard error, 95 percent confidence intervals. Additionally Z Fisher's transformation and its standard error are provided

References

King, T. S., Chinchilli, V. M., Carrasco, J. L. (2007). A repeated measures concordance correlation coefficient. Statistics in Medicine 26(16):3095 3113 Carrasco, J. L., King, T. S., and Chinchilli, V. M. (2009). The concordance correlation coefficient for repeated measures estimated by variance components. Journal of Biopharmaceutical Statistics 19, 90 105.

Examples

Run this code
data(bdaw)

result<-ccclon(bdaw,"cort_auc","SUBJ","VNUM","met")
result

summary(result)

Run the code above in your browser using DataLab