Learn R Programming

cccrm (version 1.2.1)

ccclon: Concordance Correlation Coefficient for longitudinal repeated measures estimated by variance components

Description

Estimation of the concordance correlation coefficient for repeated measurements using the variance components from a linear mixed model. The appropriate intraclass correlation coefficient is used as estimator of the concordance correlation coefficient.

Usage

ccclon(dataset, ry, rind, rtime, rmet, covar = NULL, rho = 0, cl = 0.95)

Arguments

dataset

An object of class data.frame.

ry

Character string. Name of the outcome in the data set.

rind

Character string. Name of the subject variable in the data set.

rtime

Character string. Name of the time variable in the data set.

rmet

Character string. Name of the method variable in the data set.

covar

Character vector. Name of covariables to include in the linear mixed model as fixed effects.

rho

Within subject correlation structure. A value of 0 (default option) stands for compound simmetry and 1 is used for autoregressive of order 1 structure.

cl

Confidence level.

Value

An object of class ccc. Generic function summary show a summary of the results. The output is a list with the following components:

ccc

Concordance Correlation Coefficient estimate

model

Summary of the linear mixed model

vc

Variance components estimates

sigma

Variance components asymptotic covariance matrix

Details

The concordance correlation coefficient is estimated using the appropriate intraclass correlation coefficient (see Carrasco et al, 2009; Carrasco et al, 2013). The variance components estimates are obtained from a linear mixed model estimated by restricted maximum likelihood. The standard error of CCC is computed using an Taylor's series expansion of 1st order (delta method). Confidence interval is built by applying the Fisher's Z-transformation.

References

Carrasco, JL; King, TS; Chinchilli, VM. (2009). The concordance correlation coefficient for repeated measures estimated by variance components. Journal of Biopharmaceutical Statistics, 19, 90:105.

Carrasco, JL; Phillips, BR; Puig-Martinez, J; King, TS; Chinchilli, VM. (2013). Estimation of the concordance correlation coefficient for repeated measures using SAS and R. Computer Methods and Programs in Biomedicine, 109, 293-304.

See Also

ccclonw

Examples

Run this code
# NOT RUN {
data(bdaw)
estccc<-ccclon(bdaw,"AUC","SUBJ","VNUM","MET")
estccc
summary(estccc)

# }

Run the code above in your browser using DataLab