Estimation of the concordance correlation coefficient for repeated measurements using the variance components from a linear mixed model. The appropriate intraclass correlation coefficient is used as estimator of the concordance correlation coefficient.
ccclon(dataset, ry, rind, rtime, rmet, covar = NULL, rho = 0, cl = 0.95,
control.lme=list())
An object of class ccc
. Generic function summary
show a summary of the results. The output is a list with the following components:
Concordance Correlation Coefficient estimate
nlme object with the fitted linear mixed model
Variance components estimates
Variance components asymptotic covariance matrix
An object of class data.frame
.
Character string. Name of the outcome in the data set.
Character string. Name of the subject variable in the data set.
Character string. Name of the time variable in the data set.
Character string. Name of the method variable in the data set.
Character vector. Name of covariables to include in the linear mixed model as fixed effects.
Within subject correlation structure. A value of 0 (default option) stands for compound simmetry and 1 is used for autoregressive of order 1 structure.
Confidence level.
A list of control values for the estimation algorithm used in lme
function. For further details see lme
help.
Josep Puig-Martinez and Josep L. Carrasco
The concordance correlation coefficient is estimated using the appropriate intraclass correlation coefficient (see Carrasco et al, 2009; Carrasco et al, 2013). The variance components estimates are obtained from a linear mixed model (LMM) estimated by restricted maximum likelihood. The function lme from package nlme (Pinheiro et al., 2021) is used to estimate the LMM. The standard error of CCC is computed using an Taylor's series expansion of 1st order (Ver Hoef, 2012). Confidence interval is built by applying the Fisher's Z-transformation.
Carrasco, JL; King, TS; Chinchilli, VM. (2009). The concordance correlation coefficient for repeated measures estimated by variance components. Journal of Biopharmaceutical Statistics, 19, 90:105.
Carrasco, JL; Phillips, BR; Puig-Martinez, J; King, TS; Chinchilli, VM. (2013). Estimation of the concordance correlation coefficient for repeated measures using SAS and R. Computer Methods and Programs in Biomedicine, 109, 293-304.
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-152, https://CRAN.R-project.org/package=nlme.
Ver Hoef, J.M. (2012) Who Invented the Delta Method?, The American Statistician, 66:2, 124-127.
ccclonw
data(bdaw)
estccc<-ccclon(bdaw,"AUC","SUBJ","VNUM","MET")
estccc
summary(estccc)
Run the code above in your browser using DataLab