function for plotting results from counterfactual analysis using ggplot2
ggplot2.CFA(cfaseobj, setype = "pointwise", ylim = NULL,
xlabel = NULL, ylabel = NULL, legend = FALSE)
a CFASE object to plot
whether to plot pointwise, uniform, or both standard errors
optional y limits on the plot
optional x axis labels
optional y axis labels
boolean for whether or not to plot a legend (tends to look better with this option set to FALSE)
ggplot2 object
# NOT RUN {
data(igm)
tvals <- seq(10,12,length.out=8)
yvals <- seq(quantile(igm$lcfincome, .05), quantile(igm$lcfincome, .95), length.out=50)
## obtain counterfactual results
out <- cfa2(lcfincome ~ lfincome, tvals, yvals, igm, method1="qr",
xformla2=~HEDUC, method2="qr", iters=10, tau1=seq(.05,.95,.05),
tau2=seq(.05,.95,.05))
## get the difference between the average that adjusts for covariates and
## the one that does not
ggplot2.CFA(getResDiff.CFA(out$cfa1, out$cfa2, E), setype="uniform")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab