50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

ccfa (version 1.1.0)

ggplot2.CFA: ggplot2.CFA

Description

function for plotting results from counterfactual analysis using ggplot2

Usage

ggplot2.CFA(cfaseobj, setype = "pointwise", ylim = NULL,
  xlabel = NULL, ylabel = NULL, legend = FALSE)

Arguments

cfaseobj

a CFASE object to plot

setype

whether to plot pointwise, uniform, or both standard errors

ylim

optional y limits on the plot

xlabel

optional x axis labels

ylabel

optional y axis labels

legend

boolean for whether or not to plot a legend (tends to look better with this option set to FALSE)

Value

ggplot2 object

Examples

Run this code
# NOT RUN {
data(igm)
tvals <- seq(10,12,length.out=8)
yvals <- seq(quantile(igm$lcfincome, .05), quantile(igm$lcfincome, .95), length.out=50)

## obtain counterfactual results
out <- cfa2(lcfincome ~ lfincome, tvals, yvals, igm, method1="qr",
xformla2=~HEDUC, method2="qr", iters=10, tau1=seq(.05,.95,.05),
tau2=seq(.05,.95,.05))

## get the difference between the average that adjusts for covariates and
## the one that does not
ggplot2.CFA(getResDiff.CFA(out$cfa1, out$cfa2, E), setype="uniform")
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab