Learn R Programming

ccgarch (version 0.2.1)

dcc.estimation: Estimating an (E)DCC-GARCH model

Description

This function carries out the two step estimation of the (E)DCC-GARCH model and returns estimates, standardised residuals, the estimated conditional variances, and the dynamic conditional correlations.

Usage

dcc.estimation(inia, iniA, iniB, ini.dcc, dvar, model,
method="BFGS", gradient=1, message=1)

Arguments

inia
a vector of initial values for the constants in the GARCH equation length(inia)=N
iniA
a matrix of initial values for the ARCH parameter matrix $(N \times N)$
iniB
a matrix of initial values for the GARCH parameter matrix $(N \times N)$
ini.dcc
a vector of initial values for the DCC parameters $(2 \times 1)$
dvar
a matrix of the data $(T \times N)$
model
a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model
method
a character string specifying the optimisation method in optim. There are three choices, namely, Nelder-Mead, BFGS (default) and CG.
gradient
a switch variable that determines the optimisation algorithm in the second stage optimisation. If gradient=0 Nelder-Mead is invokded. Otherwise BFGS is used (default).
message
a switch variable to turn off the display of the message when the estimation is completed. If message=0, the message is suppressed. Otherwise, the message is displayed (default)

Value

  • a list with components:
  • outthe parameter estimates and their standard errors
  • loglikthe value of the log-likelihood at the estimates
  • ha matrix of the estimated conditional variances $(T \times N)$
  • DCCa matrix of the estimated dynamic conditional correlations $(T \times N^{2})$
  • std.resida matrix of the standardised residuals $(T \times N$). See Note.
  • firstthe results of the first stage estimation
  • secondthe results of the second stage estimation

References

Engle, R.F. and K. Sheppard (2001), Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH. Stern Finance Working Paper Series FIN-01-027 (Revised in Dec. 2001), New York University Stern School of Business. Engle, R.F. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics 20, 339--350.

See Also

dcc.sim

Examples

Run this code
# Simulating data from the original DCC-GARCH(1,1) process
  nobs <- 1000; cut <- 1000
  a <- c(0.003, 0.005, 0.001)
  A <- diag(c(0.2,0.3,0.15))
  B <- diag(c(0.75, 0.6, 0.8))
  uncR <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
  dcc.para <- c(0.01,0.98)
  dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")

# Estimating a DCC-GARCH(1,1) model
  dcc.results <- dcc.estimation(inia=a, iniA=A, iniB=B, ini.dcc=dcc.para, 
        dvar=dcc.data$eps, model="diagonal")

# Parameter estimates and their robust standard errors
  dcc.results$out

Run the code above in your browser using DataLab