Learn R Programming

ccgarch (version 0.2.2)

dcc.estimation2: Maximising the second stage log-likelihood function of the (E)DCC-GARCH model

Description

This function carries out the second stage (DCC part) estimation of the (E)DCC-GARCH model.

Usage

dcc.estimation2(dvar, para, gradient=0)

Arguments

dvar
a matrix of the standardised residuals $(T \times N)$
para
a vector of the DCC parameters $(2 \times 1)$
gradient
a switch variable whether to use the gradient in the constraint optimisation. passed to constrOptim

Value

  • a list of the estimation results. See the explanations for constrOptim.

References

Engle, R.F. and K. Sheppard (2001), Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH. Stern Finance Working Paper Series FIN-01-027 (Revised in Dec. 2001), New York University Stern School of Business. Engle, R.F. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics 20, 339--350.

See Also

constrOptim, dcc.estimation1, dcc.estimation