dlc: Various partial derivatives of the DCC part of the log-likelihood function
Description
This function computes various analytical derivatives of the second stage log-likelihood
function (the DCC part) of the (E)DCC-GARCH model.
Usage
dlc(dcc.para, B, u, h, model)
Arguments
dcc.para
the estimates of the (E)DCC parameters $(2 \times 1)$
B
the estimated GARCH parameter matrix $(N \times N)$
u
a matrix of the used for estimating the (E)DCC-GARCH model $(T \times N)$
h
a matrix of the estimated conditional variances $(T \times N)$
model
a character string describing the model. "diagonal" for the diagonal model
and "extended" for the extended (full ARCH and GARCH parameter matrices) model
Value
a list with components:
dlcthe gradient of the DCC log-likelihood function w.r.t. the DCC parameters $(T \times 2)$
dvecPthe partial derivatives of the DCC matrix, $P_t$ w.r.t. the DCC parameters $(T \times N^{2})$
dvecQthe partial derivatives of the $Q_t$ matrices w.r.t. the DCC parameters $(T \times N^{2})$
d2lcthe Hessian of the DCC log-likelihood function w.r.t. the DCC parameters $(T \times 4)$
dfdwd2lcthe cross derivatives of the DCC log-likelihood function $(T \times npar.h+2)$
$npar.h$ stand for the number of parameters in the GARCH part, $npar.h = 3N$
for "diagonal" and $npar.h = 2N^{2}+N$ for "extended".
References
Engle, R.F. and K. Sheppard (2001),
Theoretical and Empirical Properties of Dynamic
Conditional Correlation Multivariate GARCH.Stern Finance Working Paper Series
FIN-01-027 (Revised in Dec. 2001),
New York University Stern School of Business.
Engle, R.F. (2002),
Dynamic Conditional Correlation: A Simple Class of
Multivariate Generalized Autoregressive Conditional
Heteroskedasticity Models.Journal of Business and Economic Statistics20, 339--350.
Hafner, C.M. and H. Herwartz (2008),
Analytical Quasi Maximum Likelihood Inference in Multivariate Volatility Models.Metrika67, 219--239.