# NOT RUN {
# Using energy_exp_fun() to create energy expenditure values across CCHS
# cycles
# energy_exp_fun() is specified in variable_details.csv along with the CCHS
# variables and cycles included.
# To transform energy_exp across cycles, use rec_with_table() for each
# CCHS cycle and specify energy_exp, along with each activity variable.
# Then by using merge_rec_data(), you can combine energy_exp across
# cycles
library(cchsflow)
energy_exp2015_2016 <- rec_with_table(
cchs2015_2016_p, c(
"DHHGAGE_cont", "PAA_045", "PAA_050", "PAA_075", "PAA_080", "PAADVDYS",
"PAADVVIG", "PAYDVTOA", "PAYDVADL", "PAYDVVIG", "PAYDVDYS", "energy_exp"
)
)
head(energy_exp2015_2016)
energy_exp2017_2018 <- rec_with_table(
cchs2017_2018_p, c(
"DHHGAGE_cont", "PAA_045", "PAA_050", "PAA_075", "PAA_080", "PAADVDYS",
"PAADVVIG", "PAYDVTOA", "PAYDVADL", "PAYDVVIG", "PAYDVDYS", "energy_exp"
)
)
tail(energy_exp2015_2016)
combined_energy_exp <- suppressWarnings(merge_rec_data(energy_exp2015_2016,
energy_exp2017_2018))
head(combined_energy_exp)
tail(combined_energy_exp)
# }
Run the code above in your browser using DataLab