Learn R Programming

ccid

The goal of ccid is to implement the Cross-Covariance Isolate Detect (CCID) methodology for the estimation of the number and location of multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. The main routines in the package have been extensively tested on fMRI data. For details on the CCID methodology, please see Anastasiou et al (2020).

Installation

You can install the released version of ccid from CRAN with:

install.packages("ccid")

Example

These are two basic examples which show you how to detect changes (if there are any) in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series.

library(ccid)
## An example of three change-points in the cross-covariance structure
## of a multivariate time series of length 400 and dimensionality equal to 40.
set.seed(111111)
num.nodes <- 40 # number of nodes
etaA.1    <- 0.95
etaA.2    <- 0.05
pcor1     <- GeneNet::ggm.simulate.pcor(num.nodes, etaA = etaA.1)
pcor2     <- GeneNet::ggm.simulate.pcor(num.nodes, etaA = etaA.2)

n <- 100
data1 <- GeneNet::ggm.simulate.data(n, pcor1)
data2 <- GeneNet::ggm.simulate.data(n, pcor2)

X1 <- rbind(data1, data2, data1, data2) ## change-points at 100, 200, 300
N1 <- detect.ic(X1, approach = 'euclidean', scales = -1)
N2 <- detect.ic(X1, approach = 'infinity', scales = -1)
N1$changepoints
#> [1] 100 199 300
N2$changepoints
#> [1] 100 199 300
N1$no.of.cpts
#> [1] 3
N2$no.of.cpts
#> [1] 3

## An example of no change-points.
set.seed(11)
A <- matrix(rnorm(20*400), nrow = 400) ## No change-point
M1 <- detect.ic(A, approach = 'euclidean', scales = -1)
M2 <- detect.ic(A, approach = 'infinity', scales = -1)
M1$changepoints
#> [1] NA
M2$changepoints
#> [1] NA

Copy Link

Version

Install

install.packages('ccid')

Monthly Downloads

199

Version

1.2.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Andreas Anastasiou

Last Published

February 1st, 2022

Functions in ccid (1.2.0)

preaverage

Preaveraging the multivariate time series
detect.ic

Multiple change-point detection in the cross-covariance structure of multivariate high-dimensional time series using a model selection criterion optimisation
ccid

ccid: a change-point detection method for estimating dynamic functional connectivity
match.cpt.ts

Associating the change-points with the component time series
detect.th

Multiple change-point detection in the cross-covariance structure of multivariate high-dimensional time series using a thresholding based procedure and, wherever possible, extraction of the component time series where the changes occurred