# \donttest{
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
#-------------------------------------
# Assess dimensionality from CDM data
#-------------------------------------
mcK <- modelcompK(dat = dat, exploreK = 4:7, stop = "AIC", val.Q = TRUE, verbose = TRUE)
mcK$sug.K # Check suggested number of attributes by each fit index
mcK$fit # Check fit indices for each K explored
sug.Q <- mcK$usedQ[[paste0("K", mcK$sug.K["AIC"])]] # Suggested Q-matrix by AIC
sug.Q <- orderQ(sug.Q, Q)$order.Q # Reorder Q-matrix attributes
mean(sug.Q == Q) # Check similarity with the generating Q-matrix
#--------------------------------------------------
# Automatic fit comparison of competing Q-matrices
#--------------------------------------------------
trueQ <- Q
missQ1 <- missQ(Q, .10, seed = 123)$miss.Q
missQ2 <- missQ(Q, .20, seed = 456)$miss.Q
missQ3 <- missQ(Q, .30, seed = 789)$miss.Q
Qs <- list(trueQ, missQ1, missQ2, missQ3)
mc <- modelcompK(dat = dat, Qs = Qs, verbose = TRUE)
mc$sel.Q # Best-fitting Q-matrix for each fit index
mc$fit # Check fit indices for each Q explored
# }
# \dontshow{
library(GDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
#-------------------------------------
# Assess dimensionality from CDM data
#-------------------------------------
mcK <- modelcompK(dat = dat, exploreK = 2, stop = "none", val.Q = TRUE, verbose = TRUE)
mcK$sug.K # Check suggested number of attributes by each fit index
mcK$fit # Check fit indices for each K explored
sug.Q <- mcK$usedQ[[paste0("K", mcK$sug.K["AIC"])]] # Suggested Q-matrix by AIC
# }
Run the code above in your browser using DataLab