Learn R Programming

celda (version 0.0.0.9000)

celda_C: celda Cell Clustering Model

Description

celda Cell Clustering Model

Usage

celda_C(counts, sample.label = NULL, K, alpha = 1, beta = 1,
  count.checksum = NULL, max.iter = 25, seed = 12345,
  z.split.on.iter = 3, z.num.splits = 3, z.init = NULL, logfile = NULL,
  ...)

Arguments

counts

A numeric count matrix

sample.label

A vector indicating the sample for each cell (column) in the count matrix

K

An integer or range of integers indicating the desired number of cell clusters (for celda_C / celda_CG models)

alpha

Non-zero concentration parameter for sample Dirichlet distribution

beta

Non-zero concentration parameter for gene Dirichlet distribution

count.checksum

An MD5 checksum for the provided counts matrix

max.iter

Maximum iterations of Gibbs sampling to perform. Defaults to 25

seed

Parameter to set.seed() for random number generation

z.split.on.iter

On every "z.split.on.iter" iteration, a heuristic will be applied using hierarchical clustering to determine if a cell cluster should be merged with another cell cluster and a third cell cluster should be split into two clusters. This helps avoid local optimum during the initialization.

z.num.splits

Maximum number of times to perform the heuristic described in z.split.on.iter

z.init

Initial values of z. If NULL, z will be randomly sampled. Default NULL.

logfile

If NULL, messages will be displayed as normal. If set to a file name, messages will be redirected messages to the file. Default NULL.

...

additonal parameters

Value

An object of class celda_C with clustering results and Gibbs sampling statistics