Learn R Programming

celda (version 0.0.0.9000)

celda_CG: celda Cell and Gene Clustering Model

Description

celda Cell and Gene Clustering Model

Usage

celda_CG(counts, sample.label = NULL, K, L, alpha = 1, beta = 1,
  delta = 1, gamma = 1, count.checksum = NULL, max.iter = 25,
  seed = 12345, z.split.on.iter = 3, z.num.splits = 3,
  y.split.on.iter = 3, y.num.splits = 3, z.init = NULL, y.init = NULL,
  logfile = NULL, ...)

Arguments

counts

A numeric count matrix.

sample.label

A vector indicating the sample for each cell in the count matrix

K

The number of cell populations

L

The number of gene clusters being considered

alpha

Non-zero concentration parameter for sample Dirichlet distribution

beta

The Dirichlet distribution parameter for Phi; adds a pseudocount to each transcriptional state within each cell. Default to 1

delta

The Dirichlet distribution parameter for Eta; adds a gene pseudocount to the numbers of genes each state. Default to 1

gamma

The Dirichlet distribution parameter for Psi; adds a pseudocount to each gene within each transcriptional state. Default to 1

count.checksum

An MD5 checksum for the provided counts matrix

max.iter

Maximum iterations of Gibbs sampling to perform. Defaults to 25

seed

Parameter to set.seed() for random number generation

z.split.on.iter

On z.split.on.iter-th iterations, a heuristic will be applied using hierarchical clustering to determine if a cell cluster should be merged with another cell cluster and a third cell cluster should be split into two clusters. This helps avoid local optimum during the initialization. Default to be 3

z.num.splits

Maximum number of times to perform the heuristic described in z.split.on.iter

y.split.on.iter

On every y.split.on.iter iteration, a heuristic will be applied using hierarchical clustering to determine if a gene cluster should be merged with another gene cluster and a third gene cluster should be split into two clusters. This helps avoid local optimum during the initialization. Default to be 3

y.num.splits

Maximum number of times to perform the heuristic described in y.split.on.iter

z.init

Initial values of z. If NULL, z will be randomly sampled. Default NULL.

y.init

Initial values of y. If NULL, y will be randomly sampled. Default NULL.

logfile

The name of the logfile to redirect messages to.

...

Additional parameters