Learn R Programming

celda (version 0.0.0.9000)

celda_G: celda Gene Clustering Model

Description

Provides cluster assignments for all genes in a provided single-cell sequencing count matrix, using the celda Bayesian hierarchical model.

Usage

celda_G(counts, L, beta = 1, delta = 1, gamma = 1, max.iter = 25,
  count.checksum = NULL, seed = 12345, y.split.on.iter = 3,
  y.num.splits = 3, y.init = NULL, logfile = NULL, ...)

Arguments

counts

A numeric count matrix

L

The number of clusters to generate

beta

The Dirichlet distribution parameter for Phi; adds a pseudocount to each transcriptional state within each cell.

delta

The Dirichlet distribution parameter for Eta; adds a gene pseudocount to the numbers of genes each state. Default to 1.

gamma

The Dirichlet distribution parameter for Psi; adds a pseudocount to each gene within each transcriptional state.

max.iter

Maximum iterations of Gibbs sampling to perform. Defaults to 25.

count.checksum

An MD5 checksum for the provided counts matrix

seed

Parameter to set.seed() for random number generation.

y.split.on.iter

On every y.split.on.iter iteration, a heuristic will be applied using hierarchical clustering to determine if a gene cluster should be merged with another gene cluster and a third gene cluster should be split into two clusters. This helps avoid local optimum during the initialization. Default to be 3.

y.num.splits

Maximum number of times to perform the heuristic described in y.split.on.iter.

y.init

Initial values of y. If NULL, y will be randomly sampled. Default NULL.

logfile

The name of the logfile to redirect messages to.

...

Additional parameters