Learn R Programming

cellTree (version 1.2.2)

ct.plot.go.dag: Gene Ontology enrichment sets plotting

Description

Plots DAG of significantly enriched terms for all topics, along with ancestor nodes.

Usage

ct.plot.go.dag(go.results, up.generations = 2, only.topics = NULL, file.output = NULL, p.val.threshold = go.results$adjusted.p.threshold, only.unique = FALSE, topic.colors = rainbow(length(go.results$results)))

Arguments

go.results
GO Enrichment result list object, such as returned by compute.go.enrichment.
up.generations
Integer (optional). Number of generations above significant nodes to include in the subgraph.
only.topics
Integer vector (optional). If not NULL, vector of topics that should be included in the plot (otherwise all topic enrichment sets are used).
file.output
String (optional). If not NULL, pathname of file to write the plot to.
p.val.threshold
Numeric (optional). P-value treshold to use to select which terms should be plotted.
only.unique
Only display terms that are only significant for one of the topics.
topic.colors
RGB colour vector (optional). Colors to use for each topic.

Value

An igraph object with the annotated GO DAG.

Examples

Run this code
# Load pre-computed LDA model for skeletal myoblast RNA-Seq data from HSMMSingleCell package:
data(HSMM_lda_model)

# Load GO mapping database for 'homo sapiens':
library(org.Hs.eg.db)


# Compute GO enrichment sets for each topic:
go.results = compute.go.enrichment(HSMM_lda_model, org.Hs.eg.db, bonferroni.correct=TRUE)

go.dag.subtree = ct.plot.go.dag(go.results, up.generations = 2)


Run the code above in your browser using DataLab