test.change.point: Function to perform changepoint tests with multiplier bootstrap using the usual sequential process
Description
This function compute the Cramer-von Mises and Kolmogorov-Smirnov test statistics based on the new sequential process of Bucher et al (2014), using multipliers and parallel computing.
Usage
test.change.point(
x,
N = 1000,
n_cores = 2,
boot.method = "multipliers",
est = FALSE
)
Value
CVM
Cramer-von Mises statistic
KS
Kolmogorov-Smirnov statistic
pvalueCVM
Pvalue for the Cramer-von Mises statistic
pvalueKS
Pvalue for theKolmogorov-Smirnov statistic
tauCVM
Estimated changepoint using the Cramer-von Mises statistic
tauKS
Estimated changepoint using the Kolmogorov-Smirnov statistic
Arguments
x
(n x d) matrix of data (observations or pseudo-observations, including residuals), d>=1
N
number of multipliers samples to compute the P-value
n_cores
number of cores for parallel computing (default = 2)
boot.method
bootstrapping method: 'multipliers' (default, fastest) or 'bootstrap'
est
if TRUE, tau is estimated (default = FALSE)
Author
Bouchra R Nasri and Bruno N Remillard, August 6, 2020
References
Nasri, B. R. Remillard, B., & Bahraoui, T. (2022). Change-point problems for multivariate time series using pseudo-observations, J. Multivariate Anal., 187, 104857.