"Gas"Reference class for gas with methods for the estimation of transport properties. The equations for the higher order corrections are taken from Kim and Monroe 2014. The second virial coefficient is calculated using the equation given by Vargas et al. 2001.
name:Chemical name
M:relative molecular mass \(M\)
m:Mass \(m\) of one gas particle in kg
sigma:Lennard-Jones Parameter σ at \(T = 0\)
zeta:Change of σ with temperature. For the noble gases \(\zeta = 0\). Due to the vibrational excitation of molecules, σ is not independent of temperature but increasing with \(T\). If \(\sigma_0\) is σ at \(T = 0\), σ at \(T\) is given by \(\sigma = \sigma_0 + \zeta T\).
epsk:Well depth of the Lennard-Jones potential \(\varepsilon/k\) at \(T = 0\) in K.
dipole_moment:dipole moment \(\mu\) in Debye.
polarizability:polarizability \(\alpha\) in Ao3.
check():Checks for presence of required data.
B(T):Second virial coefficient \(B(T)\) in units m3/mol. The second virial coefficient provides systematic corrections
to the ideal gas law.
The second virial coefficient \(B\) depends only on the pair interaction between the particles (Vargas et. al. 2001).
density(p=p0,T=T0):Gas density in units kg/m3 incorporating the second virial correction.
diffusion(p=p0, T=T0, second_order_correction=TRUE):Calculates the self diffusion coefficient in m2/s.
thermal_conductivity(T, third_order_correction=TRUE):Calculates the thermal conductivity for a monoatomic gas in W/(m.K).
viscosity(T,third_order_correction=TRUE):
binary_diffusion(p=p0, T=T0, bathGas):Binary Diffusion coefficient of gas 1 in a bath gas 2 bathGas. The gas 1 may be polar or nonpolar. The bath gas 2 must be nonpolar (Brown et al. 2010,
Langenberg et al. 2020).
fit_B_data(B_df):Determination of Lennard-Jones parameters σ and ε by nonlinear regression from a data frame of second virial coefficient data. The data frame must contain the columns
T for the temperature and value for the viscosity in units cm3/mol.
fit_viscosity_data(viscosity_df):Determination of Lennard-Jones parameters σ and ε by nonlinear regression from a data frame of viscosity data. The data frame must contain the columns T for the
temperature and value for the viscosity in units uPa.s.
fit_B_viscosity_data(B_df, viscosity_df, log=FALSE):Determination of Lennard-Jones parameters σ and ε by simultaneous nonlinear regression from a data frame of viscosity data and a data frame of second virial coefficient data.
Bechtel S, Bayer B, Vidakovic-Koch T, Wiser A, Vogel H, Sundmacher K. Precise determination of LJ parameters and Eucken correction factors for a more accurate modeling of transport properties in gases. Heat and Mass Transfer 2020;56:2515-27. tools:::Rd_expr_doi("10.1007/s00231-020-02871-4").
Brown NJ, Bastien LAJ, Price PN. Transport properties for combustion modeling. Progress in Energy and Combustion Science 2011;37:56582. tools:::Rd_expr_doi("10.1016/j.pecs.2010.12.001").
Kim SU, Monroe CW. High-accuracy calculations of sixteen collision integrals for Lennard-Jones (12-6) gases and their interpolation to parameterize neon, argon, and krypton. Journal of Computational Physics 2014 273:358-73, tools:::Rd_expr_doi("10.1016/j.jcp.2014.05.018").
Langenberg S, Carstens T, Hupperich D, Schweighoefer S, Schurath U. Technical note: Determination of binary gas-phase diffusion coefficients of unstable and adsorbing atmospheric trace gases at low temperature arrested flow and twin tube method. Atmospheric Chemistry and Physics 2020;20:366982. tools:::Rd_expr_doi("10.5194/acp-20-3669-2020").
Marrero TR, Mason EA. Gaseous Diffusion Coefficients. J. Phys. Chem. Ref. Data 1972;1:3-118. tools:::Rd_expr_doi("10.1063/1.3253094").
Vargas P, Munoz E, Rodriguez L. Second virial coefficient for the Lennard-Jones potential. Physica A: Statistical Mechanics and Its Applications 2001;290:92-100. tools:::Rd_expr_doi("10.1016/s0378-4371(00)00362-9").
Zarkova L, Hohm U. Effective (n-6) Lennard-Jones Potentials with Temperature-Dependent Parameters Introduced for Accurate Calculation of Equilibrium and Transport Properties of Ethene, Propene, Butene, and Cyclopropane. Journal of Chemical & Engineering Data 2009;54:164855. tools:::Rd_expr_doi("10.1021/je800733b").
# Second virial coefficient of methane at 300 K and standard pressure
CH4 <- Gas("methane")
print(CH4$B(T=300))
# Self-diffusion coefficient at 300 K
print(CH4$diffusion(T=300))
# create an instance of Gas for a molecule not listed in data_frame gas
Hg <- Gas("mercury")
# relative molecular mass
Hg$M <- 200.59
# mass of 1 molecule in kg
Hg$m <- Hg$M / pkg.env$Na / 1000
Hg$sigma <- 2.969
Hg$epsk <- 750
print(Hg$thermal_conductivity(T=700))
Run the code above in your browser using DataLab