Check if an argument is a vector
checkVector(
x,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE
)check_vector(
x,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE
)
assertVector(
x,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL
)
assert_vector(
x,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE,
.var.name = vname(x),
add = NULL
)
testVector(
x,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE
)
test_vector(
x,
strict = FALSE,
any.missing = TRUE,
all.missing = TRUE,
len = NULL,
min.len = NULL,
max.len = NULL,
unique = FALSE,
names = NULL,
null.ok = FALSE
)
[any] Object to check.
[logical(1)]
May the vector have additional attributes? If TRUE, mimics the behavior of
is.vector.
Default is FALSE which allows e.g. factors or data.frames
to be recognized as vectors.
[logical(1)]
Are vectors with missing values allowed? Default is TRUE.
[logical(1)]
Are vectors with only missing values allowed? Default is TRUE.
[integer(1)]
Exact expected length of x.
[integer(1)]
Minimal length of x.
[integer(1)]
Maximal length of x.
[logical(1)]
Must all values be unique? Default is FALSE.
[character(1)]
Check for names. See checkNamed for possible values.
Default is “any” which performs no check at all.
Note that you can use checkSubset to check for a specific set of names.
[logical(1)]
If set to TRUE, x may also be NULL.
In this case only a type check of x is performed, all additional checks are disabled.
[character(1)]
Name of the checked object to print in assertions. Defaults to
the heuristic implemented in vname.
[AssertCollection]
Collection to store assertion messages. See AssertCollection.
Depending on the function prefix:
If the check is successful, the functions
assertVector/assert_vector return
x invisibly, whereas
checkVector/check_vector and
testVector/test_vector return
TRUE.
If the check is not successful,
assertVector/assert_vector
throws an error message,
testVector/test_vector
returns FALSE,
and checkVector returns a string with the error message.
The function expect_vector always returns an
expectation.
Other basetypes:
checkArray(),
checkAtomicVector(),
checkAtomic(),
checkCharacter(),
checkComplex(),
checkDataFrame(),
checkDate(),
checkDouble(),
checkEnvironment(),
checkFactor(),
checkFormula(),
checkFunction(),
checkIntegerish(),
checkInteger(),
checkList(),
checkLogical(),
checkMatrix(),
checkNull(),
checkNumeric(),
checkPOSIXct(),
checkRaw()
Other atomicvector:
checkAtomicVector(),
checkAtomic()
# NOT RUN {
testVector(letters, min.len = 1L, any.missing = FALSE)
# }
Run the code above in your browser using DataLab