Learn R Programming

chemometrics (version 1.4.1)

pcaDiagplot: Diagnostics plot for PCA

Description

Score distances and orthogonal distances are computed and plotted.

Usage

pcaDiagplot(X, X.pca, a = 2, quantile = 0.975, scale = TRUE, plot = TRUE, ...)

Arguments

X
numeric data frame or matrix
X.pca
PCA object resulting e.g. from princomp
a
number of principal components
quantile
quantile for the critical cut-off values
scale
if TRUE then X will be scaled - and X.pca should be from scaled data too
plot
if TRUE a plot is generated
...
additional graphics parameters, see par

Value

Details

The score distance measures the outlyingness of the onjects within the PCA space using Mahalanobis distances. The orthogonal distance measures the distance of the objects orthogonal to the PCA space. Cut-off values for both distance measures help to distinguish between outliers and regular observations.

References

K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.

See Also

princomp

Examples

Run this code
data(glass)
require(robustbase)
glass.mcd <- covMcd(glass)
rpca <- princomp(glass,covmat=glass.mcd)
res <- pcaDiagplot(glass,rpca,a=2)

Run the code above in your browser using DataLab