Learn R Programming

chemometrics (version 1.4.1)

pcaVarexpl: PCA diagnostics for variables

Description

Diagnostics of PCA to see the explained variance for each variable.

Usage

pcaVarexpl(X, a, center = TRUE, scale = TRUE, plot = TRUE, ...)

Arguments

X
numeric data frame or matrix
a
number of principal components
center
centring of X (FALSE or TRUE)
scale
scaling of X (FALSE or TRUE)
plot
if TRUE make plot with explained variance
...
additional graphics parameters, see par

Value

Details

For a desired number of principal components the percentage of explained variance is computed for each variable and plotted.

References

K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.

See Also

princomp

Examples

Run this code
data(glass)
res <- pcaVarexpl(glass,a=2)

Run the code above in your browser using DataLab