Learn R Programming

chemometrics (version 1.4.1)

plotRidge: Plot results of Ridge regression

Description

Two plots from Ridge regression are generated: The MSE resulting from Generalized Cross Validation (GCV) versus the Ridge parameter lambda, and the regression coefficients versus lambda. The optimal choice for lambda is indicated.

Usage

plotRidge(formula, data, lambda = seq(0.5, 50, by = 0.05), ...)

Arguments

formula
formula, like y~X, i.e., dependent~response variables
data
data frame to be analyzed
lambda
possible values for the Ridge parameter to evaluate
...
additional plot arguments

Value

Details

For all values provided in lambda the results for Ridge regression are computed. The function lm.ridge is used for cross-validation and Ridge regression.

References

K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.

See Also

lm.ridge, plotRidge

Examples

Run this code
data(PAC)
res=plotRidge(y~X,data=PAC,lambda=seq(1,20,by=0.5))

Run the code above in your browser using DataLab