Run the TLG-generating pipeline
run(
object,
adam_db,
auto_pre = TRUE,
verbose = FALSE,
unwrap = FALSE,
...,
user_args = list(...)
)# S4 method for chevron_tlg
run(
object,
adam_db,
auto_pre = TRUE,
verbose = get_arg("chevron.run.verbose", "R_CHEVRON_RUN_VERBOSE", FALSE),
unwrap = get_arg("chevron.run.unwrap", "R_CHEVRON_RUN_UNWRAP", verbose),
...,
user_args = list(...)
)
an rtables (for chevron_t), rlistings (for chevron_l), grob (for chevron_g) or ElementaryTable
(null report) depending on the class of chevron_tlg object passed as object argument.
(chevron_tlg) input.
(list of data.frames) object containing the ADaM datasets
(flag) whether to perform the default pre processing step.
(flag) whether to print argument information.
(flag) whether to print the preprocessing postprocessing and main function together with the
associated layout function.
extra arguments to pass to the pre-processing, main and post-processing functions.
(list) arguments from ....
The functions stored in the preprocess, main and postprocess slots of the chevron_tlg objects are called
respectively, preprocessing, main and postprocessing functions.
When executing the run method on a chevron_tlg object, if auto_pre is TRUE, the adam_bd list is first
passed to the preprocessing function. The resulting list is then passed to the main function which produces a
table, graph or listings or a list of these objects. This output is then passed to the postprocessing function
which performed the final modifications before returning the output. Additional arguments specified in ... or
user_args are passed to each of the three functions.
run(mng01, syn_data, auto_pre = TRUE, dataset = "adlb")
Run the code above in your browser using DataLab