PLS_pheno(weather_data, bio_data, split_month = 7, runn_mean = 11, expl.var = 30, ncomp.fix = NULL, use_Tmean = FALSE, return.all = FALSE, crossvalidate = "none", end_at_pheno_end = TRUE)
Luedeling E and Gassner A, 2012. Partial Least Squares Regression for analyzing walnut phenology in California. Agricultural and Forest Meteorology 158, 43-52.
Wold S (1995) PLS for multivariate linear modeling. In: van der Waterbeemd H (ed) Chemometric methods in molecular design: methods and principles in medicinal chemistry, vol 2. Chemie, Weinheim, pp 195-218.
Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58(2), 109-130.
Mevik B-H, Wehrens R, Liland KH (2011) PLS: Partial Least Squares and Principal Component Regression. R package version 2.3-0. http://CRAN.R-project.org/package0pls.
Some applications:
Luedeling E, Kunz A and Blanke M, 2013. Identification of chilling and heat requirements of cherry trees - a statistical approach. International Journal of Biometeorology 57,679-689.
Yu H, Luedeling E and Xu J, 2010. Stronger winter than spring warming delays spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences (PNAS) 107 (51), 22151-22156.
Yu H, Xu J, Okuto E and Luedeling E, 2012. Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau. PLoS ONE 7(11), e49230.
PLS_results<-PLS_pheno(
weather_data=KA_weather,
split_month=6, #last month in same year
bio_data=KA_bloom)
PLS_results_path<-paste(getwd(),"/PLS_output",sep="")
plot_PLS(PLS_results,PLS_results_path)
Run the code above in your browser using DataLab